scispace - formally typeset
Journal ArticleDOI

Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin

TLDR
It is shown that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis, suggesting that casp enzyme activation can trigger necrosis by cleaving G SDME and offer new insights into cancer chemotherapy.
Abstract
Pyroptosis is a form of cell death that is critical for immunity. It can be induced by the canonical caspase-1 inflammasomes or by activation of caspase-4, -5 and -11 by cytosolic lipopolysaccharide. The caspases cleave gasdermin D (GSDMD) in its middle linker to release autoinhibition on its gasdermin-N domain, which executes pyroptosis via its pore-forming activity. GSDMD belongs to a gasdermin family that shares the pore-forming domain. The functions and mechanisms of activation of other gasdermins are unknown. Here we show that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis. GSDME was specifically cleaved by caspase-3 in its linker, generating a GSDME-N fragment that perforates membranes and thereby induces pyroptosis. After chemotherapy, cleavage of GSDME by caspase-3 induced pyroptosis in certain GSDME-expressing cancer cells. GSDME was silenced in most cancer cells but expressed in many normal tissues. Human primary cells exhibited GSDME-dependent pyroptosis upon activation of caspase-3 by chemotherapy drugs. Gsdme-/- (also known as Dfna5-/-) mice were protected from chemotherapy-induced tissue damage and weight loss. These findings suggest that caspase-3 activation can trigger necrosis by cleaving GSDME and offer new insights into cancer chemotherapy.

read more

Citations
More filters
Journal ArticleDOI

Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

Lorenzo Galluzzi, +186 more
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Journal ArticleDOI

Targeting Ferroptosis to Iron Out Cancer.

TL;DR: The identification of FDA-approved drugs as ferroptosis inducers creates high expectations for the potential of ferroPTosis to be a new promising way to kill therapy-resistant cancers.
Journal ArticleDOI

Cell death: a review of the major forms of apoptosis, necrosis and autophagy

TL;DR: The goal of this review is to provide a general overview of the current knowledge relating to the various forms of cell death, including apoptosis, necrosis, oncosis, pyroptosis and autophagy.
Journal ArticleDOI

The molecular machinery of regulated cell death

TL;DR: The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.
Journal ArticleDOI

Mitochondria as multifaceted regulators of cell death.

TL;DR: Surprisingly, recent data demonstrate that besides eliciting caspase activation, MOMP engages various pro-inflammatory signalling functions, suggesting that mitochondria-derived signalling downstream of pro-apoptotic cues may also have non-lethal functions.
References
More filters
Journal ArticleDOI

Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death

TL;DR: Gasdermin D (Gsdmd) is identified by genome-wide clustered regularly interspaced palindromic repeat-Cas9 nuclease screens of caspase-11- and caspasing-1-mediated pyroptosis in mouse bone marrow macrophages to offer insight into inflammasome-mediated immunity/diseases and change the understanding of pyroPTosis and programmed necrosis.
Journal ArticleDOI

Inflammasomes: mechanism of action, role in disease, and therapeutics

TL;DR: Increasing evidence in mouse models strongly implicates an involvement of the inflammasome in the initiation or progression of diseases with a high impact on public health, such as metabolic disorders and neurodegenerative diseases.
Journal ArticleDOI

Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores

TL;DR: It is shown that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy and kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined.
Journal ArticleDOI

Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death

TL;DR: The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroPTosis is not cell type specific.
Related Papers (5)
Trending Questions (1)
Caspase-3 activation induce both apoptosis and pyroptosis?

The paper states that caspase-3 activation can switch apoptosis induced by TNF or chemotherapy drugs to pyroptosis, suggesting that caspase-3 activation can induce both apoptosis and pyroptosis.