scispace - formally typeset
Open AccessJournal ArticleDOI

Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores

TLDR
It is shown that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy and kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined.
Abstract
Inflammatory caspases (caspases 1, 4, 5 and 11) are activated in response to microbial infection and danger signals. When activated, they cleave mouse and human gasdermin D (GSDMD) after Asp276 and Asp275, respectively, to generate an N-terminal cleavage product (GSDMD-NT) that triggers inflammatory death (pyroptosis) and release of inflammatory cytokines such as interleukin-1β. Cleavage removes the C-terminal fragment (GSDMD-CT), which is thought to fold back on GSDMD-NT to inhibit its activation. However, how GSDMD-NT causes cell death is unknown. Here we show that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy. GSDMD-NT binds to phosphatidylinositol phosphates and phosphatidylserine (restricted to the cell membrane inner leaflet) and cardiolipin (present in the inner and outer leaflets of bacterial membranes). Mutation of four evolutionarily conserved basic residues blocks GSDMD-NT oligomerization, membrane binding, pore formation and pyroptosis. Because of its lipid-binding preferences, GSDMD-NT kills from within the cell, but does not harm neighbouring mammalian cells when it is released during pyroptosis. GSDMD-NT also kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

Lorenzo Galluzzi, +186 more
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Journal ArticleDOI

The NLRP3 inflammasome: molecular activation and regulation to therapeutics

TL;DR: The NLRP3 inflammasome mediates pro-inflammatory responses and pyroptotic cell death and how it is being targeted to treat inflammatory diseases is described.
Journal ArticleDOI

Mechanism and Regulation of NLRP3 Inflammasome Activation

TL;DR: Current understanding of the mechanism and regulation of NLRP3 inflammasome activation as well as recent advances in the noncanonical and alternative inflammaome pathways are summarized.
Journal ArticleDOI

Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death

TL;DR: The discovery of caspase-11/4/5 function in sensing intracellular lipopolysaccharide expands the spectrum of pyroptosis mediators and also reveals that pyroPTosis is not cell type specific.
Journal ArticleDOI

Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin

TL;DR: It is shown that GSDME, which was originally identified as DFNA5 (deafness, autosomal dominant 5), can switch caspase-3-mediated apoptosis induced by TNF or chemotherapy drugs to pyroptosis, suggesting that casp enzyme activation can trigger necrosis by cleaving G SDME and offer new insights into cancer chemotherapy.
References
More filters
Journal ArticleDOI

Membrane lipids: where they are and how they behave.

TL;DR: How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functions of their individual membranes?
Journal ArticleDOI

Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death

TL;DR: Gasdermin D (Gsdmd) is identified by genome-wide clustered regularly interspaced palindromic repeat-Cas9 nuclease screens of caspase-11- and caspasing-1-mediated pyroptosis in mouse bone marrow macrophages to offer insight into inflammasome-mediated immunity/diseases and change the understanding of pyroPTosis and programmed necrosis.
Journal ArticleDOI

Phase separation of integral membrane proteins in Triton X-114 solution.

TL;DR: The partition of proteins during phase separation in solutions of Triton X-114 is investigated and integral membrane proteins with an amphiphilic nature are recovered in the detergent phase.
Journal ArticleDOI

Mixed Lineage Kinase Domain-like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase

TL;DR: The identification of a small molecule called necrosulfonamide that specifically blocks necrosis downstream of RIP3 activation is reported, which implicate MLKL as a key mediator of necrosis signaling downstream of the kinase RIP3.
Related Papers (5)