scispace - formally typeset
Journal ArticleDOI

Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death

Reads0
Chats0
TLDR
Gasdermin D (Gsdmd) is identified by genome-wide clustered regularly interspaced palindromic repeat-Cas9 nuclease screens of caspase-11- and caspasing-1-mediated pyroptosis in mouse bone marrow macrophages to offer insight into inflammasome-mediated immunity/diseases and change the understanding of pyroPTosis and programmed necrosis.
Abstract
Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1β release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.

read more

Citations
More filters
Journal ArticleDOI

Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

Lorenzo Galluzzi, +186 more
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Journal ArticleDOI

The NLRP3 inflammasome: molecular activation and regulation to therapeutics

TL;DR: The NLRP3 inflammasome mediates pro-inflammatory responses and pyroptotic cell death and how it is being targeted to treat inflammatory diseases is described.
Journal ArticleDOI

Inflammasomes: mechanism of assembly, regulation and signalling

TL;DR: This Review discusses the recent developments in inflammasome research with a focus on the molecular mechanisms that govern inflammaome assembly, signalling and regulation.
Journal ArticleDOI

Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores

TL;DR: It is shown that GSDMD-NT oligomerizes in membranes to form pores that are visible by electron microscopy and kills cell-free bacteria in vitro and may have a direct bactericidal effect within the cytosol of host cells, but the importance of direct bacterial killing in controlling in vivo infection remains to be determined.
Journal ArticleDOI

Mechanism and Regulation of NLRP3 Inflammasome Activation

TL;DR: Current understanding of the mechanism and regulation of NLRP3 inflammasome activation as well as recent advances in the noncanonical and alternative inflammaome pathways are summarized.
References
More filters
Journal ArticleDOI

Non-canonical inflammasome activation targets caspase-11

TL;DR: It is shown, with C57BL/6 Casp11 gene-targeted mice, that caspase-11 is critical for casp enzyme-1 activation and IL-1β production in macrophages infected with Escherichia coli, Citrobacter rodentium or Vibrio cholerae, and a unique pro-inflammatory role for casingase- 11 in the innate immune response to clinically significant bacterial infections is highlighted.
Journal ArticleDOI

Mechanisms and Functions of Inflammasomes

TL;DR: This Review summarizes recent insights into inflammasome biology and discusses the questions that remain in the field.
Journal ArticleDOI

Inflammatory caspases are innate immune receptors for intracellular LPS

TL;DR: It is shown that human monocytes, epithelial cells and keratinocytes undergo necrosis upon cytoplasmic delivery of LPS, which represents a new mode of pattern recognition in immunity and also an unprecedented means of caspase activation.
Journal ArticleDOI

Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4

TL;DR: It is shown that macrophages loaded with synthetic lipid A, E. coli lipopolysaccharide (LPS), or S. typhimurium LPS activate caspase-11 independently of the LPS receptor Toll-like receptor 4 (TLR4), revealing a TLR4-independent mechanism for innate immune recognition of LPS.
Journal ArticleDOI

Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria

TL;DR: The authors showed that activation of caspase-1 clears intracellular bacteria in vivo independently of IL-1β and IL-18 and establishes pyroptosis as an efficient mechanism of bacterial clearance by the innate immune system.
Related Papers (5)