scispace - formally typeset
Journal ArticleDOI

Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.

TLDR
This work has demonstrated an efficient edge-reconstruction process, at the atomic scale, for graphitic nanoribbons by Joule heating, which involves point defect annealing and edge reconstruction.
Abstract
Graphene nanoribbons can exhibit either quasi-metallic or semiconducting behavior, depending on the atomic structure of their edges. Thus, it is important to control the morphology and crystallinity of these edges for practical purposes. We demonstrated an efficient edge-reconstruction process, at the atomic scale, for graphitic nanoribbons by Joule heating. During Joule heating and electron beam irradiation, carbon atoms are vaporized, and subsequently sharp edges and step-edge arrays are stabilized, mostly with either zigzag- or armchair-edge configurations. Model calculations show that the dominant annealing mechanisms involve point defect annealing and edge reconstruction.

read more

Citations
More filters
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

Raman spectroscopy in graphene

TL;DR: In this article, the authors discuss the first-order and double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features and give special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal configuration.
Journal ArticleDOI

Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics

TL;DR: Black phosphorus (BP), the most stable allotrope of phosphorus with strong intrinsic in-plane anisotropy, is reintroduced to the layered-material family and shows great potential for thin-film electronics, infrared optoelectronics and novel devices in which anisotropic properties are desirable.
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications

TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Experimental observation of the quantum Hall effect and Berry's phase in graphene

TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal Article

Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.
Related Papers (5)