scispace - formally typeset
Open AccessJournal ArticleDOI

Energy Reconstruction Methods in the IceCube Neutrino Telescope

M. G. Aartsen, +291 more
- 17 Mar 2014 - 
- Vol. 9, Iss: 3, pp 03009
TLDR
In this article, the authors describe methods and performance of reconstructing charged particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of similar to 15% above 10 TeV.
Abstract
Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy, which is approximately equal to the neutrino energy for v(e) and v(mu) charged-current interactions and can be used to set a lower bound on neutrino energies and to measure neutrino spectra statistically in other channels. Here we describe methods and performance of reconstructing charged-particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of similar to 15% above 10 TeV.

read more

Content maybe subject to copyright    Report

This content has been downloaded from IOPscience. Please scroll down to see the full text.
Download details:
IP Address: 131.169.5.79
This content was downloaded on 16/01/2015 at 13:30
Please note that terms and conditions apply.
Energy reconstruction methods in the IceCube neutrino telescope
View the table of contents for this issue, or go to the journal homepage for more
2014 JINST 9 P03009
(http://iopscience.iop.org/1748-0221/9/03/P03009)
Home Search Collections Journals About Contact us My IOPscience

2014 JINST 9 P03009
PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB
RECEIVED: November 19, 2013
ACCEPTED: February 10, 2014
PUBLISHED: March 17, 2014
Energy reconstruction methods in the IceCube
neutrino telescope
M.G. Aartsen,
b
R. Abbasi,
ac
M. Ackermann,
as
J. Adams,
o
J.A. Aguilar,
w
M. Ahlers,
ac
D. Altmann,
v
C. Arguelles,
ac
J. Auffenberg,
ac
X. Bai,
ag,2
M. Baker,
ac
S.W. Barwick,
y
V. Baum,
ad
R. Bay,
g
J.J. Beatty,
q,r
J. Becker Tjus,
j
K.-H. Becker,
ar
S. BenZvi,
ac
P. Berghaus,
as
D. Berley,
p
E. Bernardini,
as
A. Bernhard,
a f
D.Z. Besson,
aa
G. Binder,
h,g
D. Bindig,
ar
M. Bissok,
a
E. Blaufuss,
p
J. Blumenthal,
a
D.J. Boersma,
aq
C. Bohm,
a j
D. Bose,
al
S. B
¨
oser,
k
O. Botner,
aq
L. Brayeur,
m
H.-P. Bretz,
as
A.M. Brown,
o
R. Bruijn,
z
J. Casey,
e
M. Casier,
m
D. Chirkin,
ac
A. Christov,
w
B. Christy,
p
K. Clark,
am
L. Classen,
v
F. Clevermann,
t
S. Coenders,
a
S. Cohen,
z
D.F. Cowen,
ap,ao
A.H. Cruz Silva,
as
M. Danninger,
a j
J. Daughhetee,
e
J.C. Davis,
q
M. Day,
ac
C. De Clercq,
m
S. De Ridder,
x
P. Desiati,
ac
K.D. de Vries,
m
M. de With,
i
T. DeYoung,
ap
J.C. D´ıaz-V
´
elez,
ac
M. Dunkman,
ap
R. Eagan,
ap
B. Eberhardt,
ad
B. Eichmann,
j
J. Eisch,
ac
S. Euler,
a
P.A. Evenson,
ag
O. Fadiran,
ac
A.R. Fazely,
f
A. Fedynitch,
j
J. Feintzeig,
ac,1
T. Feusels,
x
K. Filimonov,
g
C. Finley,
a j
T. Fischer-Wasels,
ar
S. Flis,
a j
A. Franckowiak,
k
K. Frantzen,
t
T. Fuchs,
t
T.K. Gaisser,
ag
J. Gallagher,
ab
L. Gerhardt,
h,g
L. Gladstone,
ac
T. Gl ¨usenkamp,
as
A. Goldschmidt,
h
G. Golup,
m
J.G. Gonzalez,
ag
J.A. Goodman,
p
D. G
´
ora,
v
D.T. Grandmont,
u
D. Grant,
u
P. Gretskov,
a
J.C. Groh,
ap
A. Groß,
a f
C. Ha,
h,g
A. Haj Ismail,
x
P. Hallen,
a
A. Hallgren,
aq
F. Halzen,
ac
K. Hanson,
l
D. Hebecker,
k
D. Heereman,
l
D. Heinen,
a
K. Helbing,
ar
R. Hellauer,
p
S. Hickford,
o
G.C. Hill,
b
K.D. Hoffman,
p
R. Hoffmann,
ar
A. Homeier,
k
K. Hoshina,
ac
F. Huang,
ap
W. Huelsnitz,
p
P.O. Hulth,
a j
K. Hultqvist,
a j
S. Hussain,
ag
A. Ishihara,
n
S. Jackson,
ac
E. Jacobi,
as
J. Jacobsen,
ac
K. Jagielski,
a
G.S. Japaridze,
d
K. Jero,
ac
O. Jlelati,
x
B. Kaminsky,
as
A. Kappes,
v
T. Karg,
as
A. Karle,
ac
M. Kauer,
ac
J.L. Kelley,
ac
J. Kiryluk,
ak
J. Kl
¨
as,
ar
S. R. Klein,
h,g
J.-H. K
¨
ohne,
t
G. Kohnen,
ae
H. Kolanoski,
i
L. K
¨
opke,
ad
C. Kopper,
ac
S. Kopper,
ar
D.J. Koskinen,
s
M. Kowalski,
k
M. Krasberg,
ac
A. Kriesten,
a
K. Krings,
a
G. Kroll,
ad
J. Kunnen,
m
N. Kurahashi,
ac
T. Kuwabara,
ag
M. Labare,
x
H. Landsman,
ac
M.J. Larson,
an
M. Lesiak-Bzdak,
ak
M. Leuermann,
a
J. Leute,
a f
J. L¨unemann,
ad
O. Mac´ıas,
o
J. Madsen,
ai
G. Maggi,
m
R. Maruyama,
ac
K. Mase,
n
H.S. Matis,
h
F. McNally,
ac
K. Meagher,
p
M. Merck,
ac
T. Meures,
l
c
2014 IOP Publishing Ltd and Sissa Medialab srl doi:10.1088/1748-0221/9/03/P03009

2014 JINST 9 P03009
S. Miarecki,
h,g
E. Middell,
as
N. Milke,
t
J. Miller,
m
L. Mohrmann,
as
T. Montaruli,
w,3
R. Morse,
ac
R. Nahnhauer,
as
U. Naumann,
ar
H. Niederhausen,
ak
S.C. Nowicki,
u
D. R. Nygren,
h
A. Obertacke,
ar
S. Odrowski,
u
A. Olivas,
p
A. Omairat,
ar
A. O’Murchadha,
l
L. Paul,
a
J.A. Pepper,
an
C. P
´
erez de los Heros,
aq
C. Pfendner,
q
D. Pieloth,
t
E. Pinat,
l
J. Posselt,
ar
P.B. Price,
g
G.T. Przybylski,
h
M. Quinnan,
ap
L. R
¨
adel,
a
M. Rameez,
w
K. Rawlins,
c
P. Redl,
p
R. Reimann,
a
E. Resconi,
a f
W. Rhode,
t
M. Ribordy,
z
M. Richman,
p
B. Riedel,
ac
S. Robertson,
b
J.P. Rodrigues,
ac
C. Rott,
al
T. Ruhe,
t
B. Ruzybayev,
ag
D. Ryckbosch,
x
S.M. Saba,
j
H.-G. Sander,
ad
M. Santander,
ac
S. Sarkar,
s,ah
K. Schatto,
ad
F. Scheriau,
t
T. Schmidt,
p
M. Schmitz,
t
S. Schoenen,
a
S. Sch
¨
oneberg,
j
A. Sch
¨
onwald,
as
A. Schukraft,
a
L. Schulte,
k
O. Schulz,
a f
D. Seckel,
ag
Y. Sestayo,
a f
S. Seunarine,
ai
R. Shanidze,
as
C. Sheremata,
u
M.W.E. Smith,
ap
D. Soldin,
ar
G.M. Spiczak,
ai
C. Spiering,
as
M. Stamatikos,
q
T. Stanev,
ag
N.A. Stanisha,
ap
A. Stasik,
k
T. Stezelberger,
h
R.G. Stokstad,
h
A. St
¨
oßl,
as
E.A. Strahler,
m
R. Str
¨
om,
aq
N. L. Strotjohann,
k
G.W. Sullivan,
p
H. Taavola,
aq
I. Taboada,
e
A. Tamburro,
ag
A. Tepe,
ar
S. Ter-Antonyan,
f
G. Te
ˇ
si
´
c,
ap
S. Tilav,
ag
P.A. Toale,
an
M.N. Tobin,
ac
S. Toscano,
ac
M. Tselengidou,
v
E. Unger,
j
M. Usner,
k
S. Vallecorsa,
w
N. van Eijndhoven,
m
A. Van Overloop,
x
J. van Santen,
ac,1
M. Vehring,
a
M. Voge,
k
M. Vraeghe,
x
C. Walck,
a j
T. Waldenmaier,
i
M. Wallraff,
a
Ch. Weaver,
ac
M. Wellons,
ac
C. Wendt,
ac
S. Westerhoff,
ac
B. Whelan,
b
N. Whitehorn,
ac,1
K. Wiebe,
ad
C.H. Wiebusch,
a
D.R. Williams,
an
H. Wissing,
p
M. Wolf,
a j
T.R. Wood,
u
K. Woschnagg,
g
D. L. Xu,
an
X.W. Xu,
f
J.P. Yanez,
as
G. Yodh,
y
S. Yoshida,
n
P. Zarzhitsky,
an
J. Ziemann,
t
S. Zierke
a
and M. Zoll
a j
a
III. Physikalisches Institut, RWTH Aachen University,
D-52056 Aachen, Germany
b
School of Chemistry & Physics, University of Adelaide,
Adelaide SA, 5005 Australia
c
Department of Physics and Astronomy, University of Alaska Anchorage,
3211 Providence Dr., Anchorage, AK 99508, U.S.A.
d
CTSPS, Clark-Atlanta University,
Atlanta, GA 30314, U.S.A.
e
School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology,
Atlanta, GA 30332, U.S.A.
f
Department of Physics, Southern University,
Baton Rouge, LA 70813, U.S.A.
g
Department of Physics, University of California,
Berkeley, CA 94720, U.S.A.
h
Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, U.S.A.
1
Corresponding author.
2
Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701, U.S.A.
3
Also Sezione INFN, Dipartimento di Fisica, I-70126, Bari, Italy.
4
NASA Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

2014 JINST 9 P03009
i
Institut f
¨
ur Physik, Humboldt-Universit
¨
at zu Berlin,
D-12489 Berlin, Germany
j
Fakult
¨
at f
¨
ur Physik & Astronomie, Ruhr-Universit
¨
at Bochum,
D-44780 Bochum, Germany
k
Physikalisches Institut, Universit
¨
at Bonn,
Nussallee 12, D-53115 Bonn, Germany
l
Science Faculty CP230, Universit
´
e Libre de Bruxelles,
B-1050 Brussels, Belgium
m
Dienst ELEM, Vrije Universiteit Brussel,
B-1050 Brussels, Belgium
n
Department of Physics, Chiba University, Chiba 263-8522, Japan
o
Department of Physics and Astronomy, University of Canterbury,
Private Bag 4800, Christchurch, New Zealand
p
Department of Physics, University of Maryland,
College Park, MD 20742, U.S.A.
q
Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University,
Columbus, OH 43210, U.S.A.
r
Department of Astronomy, Ohio State University,
Columbus, OH 43210, U.S.A.
s
Niels Bohr Institute, University of Copenhagen,
DK-2100 Copenhagen, Denmark
t
Department of Physics, TU Dortmund University,
D-44221 Dortmund, Germany
u
Department of Physics, University of Alberta,
Edmonton, Alberta, Canada T6G 2E1
v
Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universit
¨
at Erlangen-N
¨
urnberg,
D-91058 Erlangen, Germany
w
D
´
epartement de physique nucl
´
eaire et corpusculaire, Universit
´
e de Gen
`
eve,
CH-1211 Gen
`
eve, Switzerland
x
Department of Physics and Astronomy, University of Gent,
B-9000 Gent, Belgium
y
Department of Physics and Astronomy, University of California,
Irvine, CA 92697, U.S.A.
z
Laboratory for High Energy Physics,
´
Ecole Polytechnique F
´
ed
´
erale,
CH-1015 Lausanne, Switzerland
aa
Department of Physics and Astronomy, University of Kansas,
Lawrence, KS 66045, U.S.A.
ab
Department of Astronomy, University of Wisconsin,
Madison, WI 53706, U.S.A.
ac
Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin,
Madison, WI 53706, U.S.A.
ad
Institute of Physics, University of Mainz,
Staudinger Weg 7, D-55099 Mainz, Germany
ae
Universit
´
e de Mons,
7000 Mons, Belgium

2014 JINST 9 P03009
a f
Technische Universit
¨
at Munich,
D-85748 Garching, Germany
ag
Bartol Research Institute and Department of Physics and Astronomy, University of Delaware,
Newark, DE 19716, U.S.A.
ah
Department of Physics, University of Oxford,
1 Keble Road, Oxford OX1 3NP, U.K.
ai
Department of Physics, University of Wisconsin,
River Falls, WI 54022, U.S.A.
a j
Oskar Klein Centre and Department of Physics, Stockholm University,
SE-10691 Stockholm, Sweden
ak
Department of Physics and Astronomy, Stony Brook University,
Stony Brook, NY 11794-3800, U.S.A.
al
Department of Physics, Sungkyunkwan University,
Suwon 440-746, Korea
am
Department of Physics, University of Toronto,
Toronto, Ontario, M5S 1A7, Canada
an
Department of Physics and Astronomy, University of Alabama,
Tuscaloosa, AL 35487, U.S.A.
ao
Department of Astronomy and Astrophysics, Pennsylvania State University,
University Park, PA 16802, U.S.A.
ap
Department of Physics, Pennsylvania State University,
University Park, PA 16802, U.S.A.
aq
Department of Physics and Astronomy, Uppsala University,
Box 516, S-75120 Uppsala, Sweden
ar
Department of Physics, University of Wuppertal,
D-42119 Wuppertal, Germany
as
DESY,
D-15735 Zeuthen, Germany
E-mail: jacob.feintzeig@icecube.wisc.edu, vansanten@wisc.edu,
nwhitehorn@icecube.wisc.edu
ABSTRACT: Accurate measurement of neutrino energies is essential to many of the scientific
goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the
Cherenkov light produced by the transit through a medium of charged particles created in neu-
trino interactions. The amount of light emitted is proportional to the deposited energy, which is
approximately equal to the neutrino energy for ν
e
and ν
µ
charged-current interactions and can be
used to set a lower bound on neutrino energies and to measure neutrino spectra statistically in other
channels. Here we describe methods and performance of reconstructing charged-particle energies
and topologies from the observed Cherenkov light yield, including techniques to measure the en-
ergies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent
deposited energy of 15% above 10 TeV.
KEYWORDS: Cherenkov detectors; dE/dx detectors; Neutrino detectors; Performance of High
Energy Physics Detectors
ARXIV EPRINT: 1311.4767

Figures
Citations
More filters
Journal ArticleDOI

Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

TL;DR: The discovery of an extraterrestrial diffuse flux of high-energy neutrinos, announced by IceCube in 2013, has characteristic properties that hint at contributions from extragalactic sources, although the individual sources remain as yet unidentified.
Journal ArticleDOI

OBSERVATION and CHARACTERIZATION of A COSMIC MUON NEUTRINO FLUX from the NORTHERN HEMISPHERE USING SIX YEARS of ICECUBE DATA

M. G. Aartsen, +316 more
TL;DR: In this paper, an isotropic, unbroken power-law flux with a normalization at 100 TeV neutrino energy of (0.90 -0.27 +0.30) × 10-18 Gev-1 cm-2 s-1 sr-1 and a hard spectral index of γ = 2.13 ± 0.13.
Journal ArticleDOI

A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with icecube

M. G. Aartsen, +319 more
TL;DR: In this article, the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis are combined, and the combined event sample features high-statistics samples of shower-like and track-like events.
Journal ArticleDOI

The IceCube Neutrino Observatory: Instrumentation and Online Systems

M. G. Aartsen, +358 more
TL;DR: The design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and the methodology for drilling and deployment are described, including the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis.
Journal ArticleDOI

Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube

M. G. Aartsen, +310 more
- 05 Jan 2015 - 
TL;DR: In this paper, the authors presented the results of a search for neutrino interactions inside IceCube's instrumented volume between 1 TeV and 1 PeV in 641 days of data taken from 2010-2012, and showed that neutrinos from the southern sky below 10 TeV for the first time, far below the threshold of the previous high-energy analysis.
References
More filters
Journal ArticleDOI

Geant4—a simulation toolkit

S. Agostinelli, +126 more
TL;DR: The Gelfant 4 toolkit as discussed by the authors is a toolkit for simulating the passage of particles through matter, including a complete range of functionality including tracking, geometry, physics models and hits.
Journal ArticleDOI

Review of Particle Physics

Claude Amsler, +176 more
- 01 Jul 1996 - 
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.
Book

Solving least squares problems

TL;DR: Since the lm function provides a lot of features it is rather complicated so it is going to instead use the function lsfit as a model, which computes only the coefficient estimates and the residuals.
Journal ArticleDOI

Review of Particle Physics: Particle data group

Kaoru Hagiwara, +142 more
- 20 Jul 2012 - 
TL;DR: The Particle Data Group's biennial review as mentioned in this paper summarizes much of particle physics, using data from previous editions, plus 2658 new measurements from 644 papers, and lists, evaluates, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons.
Journal ArticleDOI

Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector

M. G. Aartsen, +96 more
- 20 Nov 2013 - 
TL;DR: The presence of a high-energy neutrino flux containing the most energetic neutrinos ever observed is revealed, including 28 events at energies between 30 and 1200 TeV, although the origin of this flux is unknown and the findings are consistent with expectations for a neutRino population with origins outside the solar system.
Related Papers (5)

Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector

M. G. Aartsen, +96 more
- 20 Nov 2013 - 

Observation of high-energy astrophysical neutrinos in three years of icecube data

M. G. Aartsen, +302 more

OBSERVATION and CHARACTERIZATION of A COSMIC MUON NEUTRINO FLUX from the NORTHERN HEMISPHERE USING SIX YEARS of ICECUBE DATA

M. G. Aartsen, +316 more

The IceCube Neutrino Observatory: Instrumentation and Online Systems

M. G. Aartsen, +358 more

A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with icecube

M. G. Aartsen, +319 more
Frequently Asked Questions (2)
Q1. What are the contributions in "Energy reconstruction methods in the icecube neutrino telescope" ?

The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. Here the authors describe methods and performance of reconstructing charged-particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of ∼ 15 % above 10 TeV. 

Some of these may be reduced in the future, in particular those due to modeling of light propagation and shower development. A wealth of additional information is provided by these topological reconstructions and the likelihood model described here: in addition to reconstruction of muon energies, topologies can also be used to study muon energy loss processes at very high energies and for particle identification. Work is on-going to use this information fully for high-quality muon energy reconstruction, in particular in the case of muons produced in νµ charged-current interactions, where neutrino flavor can be measured directly and all charged particles are visible. As this work on using the detailed energy loss patterns of muons to measure their energies continues, a variety of – 29 – 2 0 1 4 J I N S T 9 P 0 3 0 0 9 alternative observables can be used, optimized for different use cases.