scispace - formally typeset
Open AccessJournal ArticleDOI

Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

Joelle Amselem, +76 more
- 18 Aug 2011 - 
- Vol. 7, Iss: 8
TLDR
Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea, and shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating.
Abstract
Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to ,1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways

TL;DR: This fungal pathogen transfers “virulent” sRNA effectors into host plant cells to suppress host immunity and achieve infection, which demonstrates a naturally occurring cross-kingdom RNAi as an advanced virulence mechanism.
Journal ArticleDOI

Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

Richard J. O'Connell, +71 more
- 01 Sep 2012 - 
TL;DR: Findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.
Journal ArticleDOI

Genome evolution in filamentous plant pathogens: why bigger can be better

TL;DR: Cases in which genome plasticity has contributed to the emergence of new virulence traits are illustrated and how genome expansions may have had an impact on the co-evolutionary conflict between these filamentous plant pathogens and their hosts are discussed.
References
More filters
Journal ArticleDOI

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Journal ArticleDOI

The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.

TL;DR: ClUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W, providing an integrated system for performing multiple sequence and profile alignments and analysing the results.
Journal ArticleDOI

MRBAYES: Bayesian inference of phylogenetic trees

TL;DR: The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo, and an executable is available at http://brahms.rochester.edu/software.html.
Journal ArticleDOI

MODELTEST: testing the model of DNA substitution.

TL;DR: The program MODELTEST uses log likelihood scores to establish the model of DNA evolution that best fits the data.
Related Papers (5)

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

Li-Jun Ma, +65 more
- 18 Mar 2010 -