scispace - formally typeset
Open AccessJournal ArticleDOI

MeCP2 binds to 5hmc enriched within active genes and accessible chromatin in the nervous system

TLDR
In this paper, a quantitative, genome-wide analysis of 5hmC, 5-methylcytosine (5mC), and gene expression in differentiated CNS cell types in vivo is presented.
Abstract
SUMMARY The high level of 5-hydroxymethylcytosine (5hmC) present in neuronal genomes suggests that mechanisms interpreting 5hmC in the CNS may differ from those present in embryonic stem cells. Here, we present quantitative, genome-wide analysis of 5hmC, 5-methylcytosine (5mC), and gene expression in differentiated CNS cell types in vivo. We report that 5hmC is enriched in active genes and that, surprisingly, strong depletion of 5mC is observed over these regions. The contribution of these epigenetic marks to gene expression depends critically on cell type. We identify methyl-CpG-binding protein 2 (MeCP2) as the major 5hmC-binding protein in the brain and demonstrate that MeCP2 binds 5hmC- and 5mC-containing DNA with similar high affinities. The Rett-syndrome-causing mutation R133C preferentially inhibits 5hmC binding. These findings support a model in which 5hmC and MeCP2 constitute a cell-specific epigenetic mechanism for regulation of chromatin structure and gene expression.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome.

TL;DR: An Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations is described, finding that MeCP2[T158M] is significantly less stable than Me CP2[R133C], which may account for the divergent clinical impact of the mutations.
Journal ArticleDOI

Implications of DNA Methylation in Parkinson’s Disease

TL;DR: Although the search for significant DNA methylation changes and gene expression analyses of PD-associated genes have yielded inconsistent and contradictory results, epigenetic modifications remain under investigation for their potential to reveal the link between environmental risk factors and the development of PD.
Journal ArticleDOI

Cell-Type-Specific Translation Profiling Reveals a Novel Strategy for Treating Fragile X Syndrome

TL;DR: Surprisingly, enhancement rather than inhibition of M4 activity normalizes core phenotypes in the Fmr1−/y, including excessive protein synthesis, exaggerated mGluR-LTD, and audiogenic seizures.
Journal ArticleDOI

A High-Resolution Imaging Approach to Investigate Chromatin Architecture in Complex Tissues

TL;DR: ChromATin is presented as a powerful in situ method for examining cell-type-specific differences in chromatin architecture in complex tissues and is applied to examine how the genome is organized in the mammalian brain using female Rett syndrome mice.
References
More filters
Journal ArticleDOI

Differential expression analysis for sequence count data.

Simon Anders, +1 more
- 27 Oct 2010 - 
TL;DR: A method based on the negative binomial distribution, with variance and mean linked by local regression, is proposed and an implementation, DESeq, as an R/Bioconductor package is presented.
Journal ArticleDOI

Mapping and quantifying mammalian transcriptomes by RNA-Seq.

TL;DR: Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors.
Journal ArticleDOI

Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1

TL;DR: It is shown here that TET1, a fusion partner of the MLL gene in acute myeloid leukemia, is a 2-oxoglutarate (2OG)- and Fe(II)-dependent enzyme that catalyzes conversion of 5mC to 5-hydroxymethylcytosine (hmC) in cultured cells and in vitro.
Journal ArticleDOI

Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2.

TL;DR: This study reports the first disease-causing mutations in RTT and points to abnormal epigenetic regulation as the mechanism underlying the pathogenesis of RTT.
Related Papers (5)