scispace - formally typeset
Journal ArticleDOI

SRAM design on 65-nm CMOS technology with dynamic sleep transistor for leakage reduction

Reads0
Chats0
TLDR
In this paper, a 70-Mb SRAM was designed and fabricated on a 65-nm CMOS technology, which features a 0.57-/spl mu/m/sup 2/6T SRAM cell with large noise margin down to 0.7 V for low-voltage operation.
Abstract
A 70-Mb SRAM is designed and fabricated on a 65-nm CMOS technology. It features a 0.57-/spl mu/m/sup 2/ 6T SRAM cell with large noise margin down to 0.7 V for low-voltage operation. The fully synchronized subarray contains an integrated leakage reduction scheme with dynamically controlled sleep transistor. SRAM virtual ground in standby is controlled by programmable bias transistors to achieve good voltage control with fine granularity under process skew. It also has a built-in programmable defect "screen" circuit for high volume manufacturing. The measurements showed that the SRAM leakage can be reduced by 3-5/spl times/ while maintaining the integrity of stored data.

read more

Citations
More filters
Journal ArticleDOI

FinFET SRAM cell with improved stability and power for low power applications.

Abstract: In this paper, a new 11T SRAM cell using Double gate FET (FinFET technology) has been proposed, cell basic component is the 6T SRAM cell with 4 NMOS access transistors to improve the stability over CMOSFET circuits and also makes it a dual port memory cell. The proposed cell also used a header scheme in which one extra PMOS transistor is used which is biased at different voltages to improve the read and write stability which helps in reducing the leakage current, active power. The cell shows improvement in RSNM (Read Static Noise Margin) with LP8T by 2.39x at threshold and subthreshold voltage 2.68x with D6T SRAM cell, 5.5x with TG8T. The WSNM (Write Static Noise Margin) and HM (Hold Margin) of the SRAM cell at 0.9V is 306mV and 384mV.At subthreshold operation also, it shows improvement. The Leakage power reduced by 0.125x with LP8T, 0.022x with D6T SRAM cell, TG8T and SE8T. Impact of process variation on cell stability also been analyzed.
Proceedings ArticleDOI

Low power nMOS based memory cell

TL;DR: In this article, a new type of memory cell designed by using only nMOS transistors was proposed, which consumes less power and occupies minimum amount of silicon area, and the stability of the data during successive read operation and noise margin are in the promising range.
Book ChapterDOI

SRAM Cells for Embedded Systems

Jawar Singh, +1 more
TL;DR: It may not be an exaggeration to say that the SRAM is a good technology representative and a powerful workhorse for the realization of modern SoC applications and high performance processors.

Integrated circuit/microfluidic chips for dielectric manipulation

TL;DR: In this paper, the authors describe the development of Integrated-Circuit/Microfluidic chips that can move individual living cells and chemical droplets along programmable paths using dielectrophoresis (DEP).
Journal ArticleDOI

Reducing Leakage Power for SRAM Design Using Sleep Transistor

TL;DR: This project's focus is to reduce leakage power consumption of an 8 kbit SRAM by employing techniques like power gating, the main technique used is the use of sleep transistor in this design.
References
More filters
Proceedings ArticleDOI

Characterization of multi-bit soft error events in advanced SRAMs

TL;DR: An exhaustive characterization of multi-bit errors in 90/130 nm SRAMs is presented to support bit interleaving rules that make the impact of multi -bit errors negligible.
Journal ArticleDOI

A single-V/sub t/ low-leakage gated-ground cache for deep submicron

TL;DR: A novel integrated circuit and architectural level technique to reduce leakage power consumption in high-performance cache memories using single V/sub t/ (transistor threshold voltage) process and Experimental results on gated-ground caches show that data is retained (DRG-Cache) even if the memory is put in the standby mode of operation.
Journal ArticleDOI

A 300-MHz 25-/spl mu/A/Mb-leakage on-chip SRAM module featuring process-variation immunity and low-leakage-active mode for mobile-phone application processor

TL;DR: In this paper, an on-chip 1-Mb SRAM suitable for embedding in the application processor used in mobile cellular phones was developed, which supports three operating modes - high-speed active mode, low-leakage low-speed activity mode, and standby mode - and uses a subdivisional power-line control (SPC) scheme.
Proceedings ArticleDOI

A pico-joule class, 1 GHz, 32 KByte/spl times/64 b DSP SRAM with self reverse bias

TL;DR: In this paper, a self reverse biasing scheme was proposed to address leakage due to quantum tunneling and thermal excitation in all cell transistors, with an area, performance and noise margin penalty of less than 3% each.
Proceedings ArticleDOI

Two orders of magnitude leakage power reduction of low voltage SRAMs by row-by-row dynamic V/sub dd/ control (RRDV) scheme

TL;DR: In this article, a novel SRAM scheme is proposed that can reduce the active leakage power by two orders of magnitude in the low voltage region of less than 1 V, the VTH, V/sub TH/, is lowered to less than 0.2 V and the leakage power of memory cells becomes a dominant issue.
Related Papers (5)