scispace - formally typeset
Open AccessJournal ArticleDOI

TALENs: a widely applicable technology for targeted genome editing

J. Keith Joung, +1 more
- 01 Jan 2013 - 
- Vol. 14, Iss: 1, pp 49-55
Reads0
Chats0
TLDR
The newly-developed transcription activator-like effector nucleases (TALENs) comprise a nonspecific DNA-cleaving nuclease fused to a DNA-binding domain that can be easily engineered so that TALens can target essentially any sequence.
Abstract
Engineered nucleases enable the targeted alteration of nearly any gene in a wide range of cell types and organisms. The newly-developed transcription activator-like effector nucleases (TALENs) comprise a nonspecific DNA-cleaving nuclease fused to a DNA-binding domain that can be easily engineered so that TALENs can target essentially any sequence. The capability to quickly and efficiently alter genes using TALENs promises to have profound impacts on biological research and to yield potential therapeutic strategies for genetic diseases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Cystic fibrosis: toward personalized therapies

TL;DR: The recent breakthrough in stem cell biology allowing the culturing of mini-organs from individual patients is not only relevant for future stem cell therapy, but may also allow the preclinical testing of new drugs or combinations that are optimally suited for an individual patient.
Journal ArticleDOI

Identification of loci that cause phenotypic variation in diverse species with the reciprocal hemizygosity test.

TL;DR: The reciprocal hemizygosity test is a straightforward genetic test that can positively identify genes that have evolved to contribute to a phenotypic difference between strains or between species.
Journal ArticleDOI

Endonucleases: new tools to edit the mouse genome

TL;DR: The basic principles of these new strategies in mouse genome manipulation, their inherent advantages, and their potential disadvantages compared to current technologies used to study gene function in mouse models are described.
Patent

Adenosine nucleobase editors and uses thereof

TL;DR: In this article, the authors provide fusion proteins comprising a Cas9 (e.g., a Cas 9 nickase) domain and adenosine deaminases that deaminate adenosines in DNA, and in some embodiments, the fusion proteins further comprise a nuclear localization sequence (NLS), and/or an inhibitor of base repair, such as, a nuclease dead inosine specific nucolate (dISN).
Journal ArticleDOI

Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes.

TL;DR: The efficiency of site-specific germline mutation in the mouse confirm TALEN mediated mutagenesis in the oocyte to be a viable alternative to conventional gene targeting in embryonic stem cells where simple loss-of-function alleles are required.
References
More filters
Journal ArticleDOI

Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors

TL;DR: The functionality of a distinct type of DNA binding domain is described and allows the design ofDNA binding domains for biotechnology.
Journal ArticleDOI

Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting

TL;DR: A method and reagents for efficiently assembling TALEN constructs with custom repeat arrays are presented and design guidelines based on naturally occurring TAL effectors and their binding sites are described.
Journal ArticleDOI

A TALE nuclease architecture for efficient genome editing

TL;DR: This study identifies TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and uses them to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%.
Journal ArticleDOI

Genome editing with engineered zinc finger nucleases

TL;DR: A broad range of outcomes has resulted from the application of the same core technology: targeted genome cleavage by engineered, sequence-specific zinc finger nucleases followed by gene modification during subsequent repair.
Journal ArticleDOI

A Simple Cipher Governs DNA Recognition by TAL Effectors

TL;DR: It is shown that a repeat-variable pair of residues specifies the nucleotides in the target site, one pair to one nucleotide, with no apparent context dependence, which represents a previously unknown mechanism for protein-DNA recognition that explains TAL effector specificity, enables target site prediction, and opens prospects for use of TAL effects in research and biotechnology.
Related Papers (5)