scispace - formally typeset
Search or ask a question

Showing papers on "Bacillus anthracis published in 2008"


Journal ArticleDOI
TL;DR: NOD2 plays a key role in the B. anthracis-induced inflammatory response by being a critical mediator of IL-1β secretion, and caspase-1 and NOD2 depend on each other for this role.
Abstract: NOD2, a NOD-like receptor (NLR), is an intracellular sensor of bacterial muramyl dipeptide (MDP) that was suggested to promote secretion of the proinflammatory cytokine IL-1β. Yet, the molecular mechanism by which NOD2 can stimulate IL-1β secretion, and its biological significance were heretofore unknown. We found that NOD2 through its N-terminal caspase recruitment domain directly binds and activates caspase-1 to trigger IL-1β processing and secretion in MDP-stimulated macrophages, whereas the C-terminal leucine-rich repeats of NOD2 prevent caspase-1 activation in nonstimulated cells. MDP challenge induces the association of NOD2 with another NLR protein, NALP1, and gel filtration analysis revealed the formation of a complex consisting of NOD2, NALP1, and caspase-1. Importantly, Bacillus anthracis infection induces IL-1β secretion in a manner that depended on caspase-1 and NOD2. In vitro, Anthrax lethal toxin strongly potentiated IL-1β secretion, and that response was NOD2 and caspase-1-dependent. Thus, NOD2 plays a key role in the B. anthracis-induced inflammatory response by being a critical mediator of IL-1β secretion.

379 citations


Journal ArticleDOI
TL;DR: It is demonstrated that pathogenic bacteria use their own NO as a key defense against the immune oxidative burst, thereby establishing bNOS as an essential virulence factor and representing an attractive antimicrobial target for treatment of anthrax and other infectious diseases.
Abstract: Phagocytes generate nitric oxide (NO) and other reactive oxygen and nitrogen species in large quantities to combat infecting bacteria. Here, we report the surprising observation that in vivo survival of a notorious pathogen—Bacillus anthracis—critically depends on its own NO-synthase (bNOS) activity. Anthrax spores (Sterne strain) deficient in bNOS lose their virulence in an A/J mouse model of systemic infection and exhibit severely compromised survival when germinating within macrophages. The mechanism underlying bNOS-dependent resistance to macrophage killing relies on NO-mediated activation of bacterial catalase and suppression of the damaging Fenton reaction. Our results demonstrate that pathogenic bacteria use their own NO as a key defense against the immune oxidative burst, thereby establishing bNOS as an essential virulence factor. Thus, bNOS represents an attractive antimicrobial target for treatment of anthrax and other infectious diseases.

201 citations


Journal ArticleDOI
TL;DR: The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in knowledge of the B. cereus group and incite to consider a necessity of creating prophylactic vaccines against bacteria closely related to NVH391-98 and F837/76.

155 citations


Journal ArticleDOI
TL;DR: It is reported here that B. anthracis secretes IsdX1 and Isd X2, two NEAT domain proteins, to remove heme from hemoglobin, thereby retrieving iron for bacterial growth.
Abstract: Acquisition of iron is necessary for the replication of nearly all bacterial pathogens; however, iron of vertebrate hosts is mostly sequestered by heme and bound to hemoglobin within red blood cells In Bacillus anthracis, the spore-forming agent of anthrax, the mechanisms of iron scavenging from hemoglobin are unknown We report here that B anthracis secretes IsdX1 and IsdX2, two NEAT domain proteins, to remove heme from hemoglobin, thereby retrieving iron for bacterial growth Unlike other Gram-positive bacteria, which rely on cell wall anchored Isd proteins for heme scavenging, B anthracis seems to have also evolved NEAT domain proteins in the extracellular milieu and in the bacterial envelope to provide for the passage of heme

128 citations


Journal ArticleDOI
TL;DR: Spores of B. anthracis, B. subtilis and B. megaterium were 5–10 times more resistant to UV than were their corresponding vegetative cells, and these data indicate that spores of B.'s subtil is and B.'"s megateria could be adequate simulants of B.'" in UVC experiments.
Abstract: Our goal was to ultimately predict the sensitivity of untested bacteria (including those of biodefense interest) to ultraviolet (UV) radiation. In this study, we present an overview and analysis of the relevant 254 nm data previously reported and available in the literature. The amount of variability in this data prevented us from determining an "average" response for any bacterium. Therefore, we developed particular selection criteria to include the data in our analysis and suggested future guidelines for reporting UV sensitivity results. We then compiled a table of the sensitivity to 254 nm UV for 38 bacteria and three bacterial spores. The UV sensitivity was quite similar (within 10%) among the spores of Bacillus anthracis (strains Vollum 1B and Sterne), Bacillus subtilis, and Bacillus megaterium. These data indicate that spores of B. subtilis and B. megaterium could be adequate simulants of B. anthracis spores in UVC experiments. Spores of B. anthracis, B. subtilis and B. megaterium were 5-10 times more resistant to UV than were their corresponding vegetative cells. The vegetative cells of B. anthracis showed similar UV sensitivity to those of Burkholderia pseudomallei, Shigella sonnei, and a wild-type strain of Escherichia coli. Yersinia enterocolitica and Vibrio cholerae appeared more sensitive to UV and Salmonella typhi slightly more resistant to UV than E. coli. The sensitivity (at 254 nm) of all vegetative bacteria ranged from 11 to 80 Jm(2) for a 1 Log(10) kill and from 25-200 Jm(2) for 4 Log(10) kill.

124 citations


Journal ArticleDOI
TL;DR: This work validates the applicability of qualitative SER spectroscopy for analysis of bacterial species by utilizing principal component analysis (PCA) to show discrimination of biological threat simulants, based upon multivariate statistical confidence limits bounding known data clusters.
Abstract: Surface-enhanced Raman spectroscopy (SERS) can provide rapid fingerprinting of biomaterial in a nondestructive manner. The adsorption of colloidal silver to biological material suppresses native biofluorescence while providing electromagnetic surface enhancement of the normal Raman signal. This work validates the applicability of qualitative SER spectroscopy for analysis of bacterial species by utilizing principal component analysis (PCA) to show discrimination of biological threat simulants, based upon multivariate statistical confidence limits bounding known data clusters. Gram-positive Bacillus spores (Bacillus atrophaeus, Bacillus anthracis, and Bacillus thuringiensis) are investigated along with the Gram-negative bacterium Pantoea agglomerans.

101 citations


Journal ArticleDOI
TL;DR: The data indicate that the Mac-1/BclA interaction may play a major role in B. anthracis pathogenesis by promoting spore uptake by professional phagocytes and subsequent access to a favorable niche for transport, germination, and outgrowth in lymphoid tissues.
Abstract: Anthrax, a disease caused by Bacillus anthracis, affects animals and humans. Because the inert spore is the infectious form of the organism that first contacts the potential host, the interaction between the host and spore exosporium is vital to the initiation of disease. Here, we demonstrate that the integrin Mac-1 is essential for the recognition of the major exosporium protein BclA by phagocytic cells. Expression of Mac-1, but not p150/95, in CHO cells markedly enhanced infection with Sterne strain of B. anthracis spores (WT spores). Conversely, CD11b−/− macrophages demonstrated a significant decrease in spore uptake when compared with macrophages from normal C57BL/6 mice. However, when CD11b−/− macrophages were infected with ΔbclA spores, spore ingestion was no different from their C57BL/6 counterparts. ΔbclA spores were also efficiently internalized by all CHO cell lines tested, independently of Mac-1 expression. Taken together, these results show that there is an alternative Mac-1-independent pathway involved in spore uptake that is unmasked only in the absence of BclA. Survival studies, using C57BL/6 and CD11b−/− mice, revealed that CD11b−/− mice are more resistant to infection with WT but not ΔbclA spores. Our experiments also show that ΔbclA spores are more virulent than WT spores in C57BL/6 and A/J mice. Overall, our data indicate that the Mac-1/BclA interaction may play a major role in B. anthracis pathogenesis by promoting spore uptake by professional phagocytes and subsequent access to a favorable niche for transport, germination, and outgrowth in lymphoid tissues.

99 citations


Journal ArticleDOI
TL;DR: The Gram‐positive pathogen Bacillus anthracis causes anthrax, a fulminant and lethal infection of mammals, and its genes, whose products harbour similar SLH domains, may provide additional surface molecules that allow bacilli to engage cells or tissues of specific hosts during anthrax pathogenesis.
Abstract: The Gram-positive pathogen Bacillus anthracis causes anthrax, a fulminant and lethal infection of mammals. Two large virulence plasmids, pXO1 and pXO2, harbour genes required for anthrax pathogenesis and encode secreted toxins or provide for the poly gamma-d-glutamic acid capsule. In addition to capsule, B. anthracis harbours additional cell wall envelope structures, including the surface layer (S-layer), which is composed of crystalline protein arrays. We sought to identify the B. anthracis envelope factor that mediates adherence of vegetative forms to human cells and isolated BslA (B. anthracisS-layer protein A). Its structural gene, bslA, is located on the pXO1 pathogenicity island (pXO1-90) and bslA expression is both necessary and sufficient for adherence of vegetative forms to host cells. BslA assembly into S-layers and surface exposure is presumably mediated by three N-terminal SLH domains. Twenty-three B. anthracis genes, whose products harbour similar SLH domains, may provide additional surface molecules that allow bacilli to engage cells or tissues of specific hosts during anthrax pathogenesis.

94 citations


Journal ArticleDOI
TL;DR: By virtue of its interaction to host plasminogen and extracellular matrix proteins, alpha-enolase may contribute in augmenting the invasive potential of B. anthracis.

91 citations


Journal ArticleDOI
TL;DR: A novel targeting system can be exploited to incorporate foreign proteins into the exosporium of inactivated, spores resulting in the surface display of recombinant immunogens for use as a potential vaccine delivery system.
Abstract: The exosporium is the outermost layer of the Bacillus anthracis spore. The predominant protein on the exosporium surface is BclA, a collagen-like glycoprotein. BclA is incorporated on the spore surface late in the B. anthracis sporulation pathway. A second collagen-like protein, BclB, has been shown to be surface-exposed on B. anthracis spores. We have identified sequences near the N-terminus of the BclA and BclB glycoproteins responsible for the incorporation of these proteins into the exosporium layer of the spore and used these targeting domains to incorporate reporter fluorescent proteins onto the spore surface. The BclA and BclB proteins are expressed in the mother cell cytoplasm and become spore-associated in a two-step process involving first association of the protein with the spore surface followed by attachment of the protein in a process that involves a proteolytic cleavage event. Protein domains associated with each of these events have been identified. This novel targeting system can be exploited to incorporate foreign proteins into the exosporium of inactivated, spores resulting in the surface display of recombinant immunogens for use as a potential vaccine delivery system.

91 citations


Journal ArticleDOI
TL;DR: Tumor histology and in vivo angiogenesis assays showed that even tumors genetically deficient in anthrax toxin receptors were still susceptible to the toxin therapy in vivo, suggesting that this MMP-activated anti-tumor toxin has potential for use in cancer therapy.

Journal ArticleDOI
TL;DR: It is demonstrated that spores lose heat resistance and become hydrated in the presence of nisin, thereby ruling out a possible mechanism of inhibition in which nisin acts to block germination initiation, and that nisin rapidly and irreversibly inhibits growth.
Abstract: The lantibiotic nisin has previously been reported to inhibit the outgrowth of spores from several Bacillus species. However, the mode of action of nisin responsible for outgrowth inhibition is poorly understood. By using B. anthracis Sterne 7702 as a model, nisin acted against spores with a 50% inhibitory concentration (IC50) and an IC90 of 0.57 μM and 0.90 μM, respectively. Viable B. anthracis organisms were not recoverable from cultures containing concentrations of nisin greater than the IC90. These studies demonstrated that spores lose heat resistance and become hydrated in the presence of nisin, thereby ruling out a possible mechanism of inhibition in which nisin acts to block germination initiation. Rather, germination initiation is requisite for the action of nisin. This study also revealed that nisin rapidly and irreversibly inhibits growth by preventing the establishment of oxidative metabolism and the membrane potential in germinating spores. On the other hand, nisin had no detectable effects on the typical changes associated with the dissolution of the outer spore structures (e.g., the spore coats, cortex, and exosporium). Thus, the action of nisin results in the uncoupling of two critical sequences of events necessary for the outgrowth of spores: the establishment of metabolism and the shedding of the external spore structures.

Journal ArticleDOI
TL;DR: This article reviews the accumulated evidence for immunization, either active or passive, to counter the malicious release of anthrax spores and suggests that combining antibiotic prophylaxis and active immunization before illness onset may offer the best combination of prompt and sustained protection.
Abstract: Anthrax spores rank as the leading threat among bioweapons. This article reviews the accumulated evidence for immunization, either active or passive, to counter the malicious release of anthrax spores. The key protective factor in current anthrax vaccines for humans is a protein called protective antigen, which allows ingress of toxins into cells. The US vaccine is licensed to prevent anthrax, regardless of the route of exposure. Its dosing schedule is cumbersome and somewhat painful (shortcomings that may be resolved by ongoing clinical studies). It can be prescribed with the confidence commensurate with dozens of human safety studies and experience in 1.8 million recent vaccinees. For post-exposure prophylaxis, combining antibiotic prophylaxis and active immunization before illness onset may offer the best combination of prompt and sustained protection, especially for people who inhale large doses of spores. To treat anthrax infection, passive immunization using a polyclonal or monoclonal antibody product may offer important clinical benefit, especially if the anthrax bacteria are resistant to multiple antibiotics.

Journal ArticleDOI
TL;DR: An extensively evaluated and - to the current knowledge - specific TaqMan PCR assay for the detection of B. anthracis based on a chromosomal marker is presented.

Journal ArticleDOI
TL;DR: It is concluded that in this animal system, the primary site of B. anthracis spore germination is the lungs, and that mediastinal lymph nodes remained nonluminescent throughout the infection.
Abstract: We sought to visualize the site of Bacillus anthracis spore germination in vivo. For that purpose, we constructed a reporter plasmid with the lux operon under control of the spore small acid-soluble protein B (sspB) promoter. In B. subtilis, sspB-driven synthesis of luciferase during sporulation results in incorporation of the enzyme in spores. We observed that B. anthracis Sterne transformed with our sspBp::lux plasmid was only luminescent during germination. In contrast, Sterne transformed with a similarly constructed plasmid with lux expression under control of the protective antigen promoter displayed luminescence only during vegetative growth. We then infected A/J mice intranasally with spores that harbored the germination reporter. Mice were monitored for up to 14 days with the Xenogen In Vivo Imaging System. While luminescence only became evident in live animals at 18 h, dissection after sacrificing infected mice at earlier time points revealed luminescence in lung tissue at 30 min after intranasal infection. Microscopic histochemical and immunofluorescence studies on luminescent lung sections and imprints revealed that macrophages were the first cells in contact with the B. anthracis spores. By 6 h after infection, polymorphonuclear leukocytes with intracellular spores were evident in the alveolar spaces. After 24 h, few free spores were observed in the alveolar spaces; most of the spores detected by immunofluorescence were in the cytoplasm of interstitial macrophages. In contrast, mediastinal lymph nodes remained nonluminescent throughout the infection. We conclude that in this animal system, the primary site of B. anthracis spore germination is the lungs.

Journal ArticleDOI
TL;DR: Three iron‐regulated surface determinant (Isd) proteins, containing NEAr Transporter (NEAT) domains (GBAA4789‐7), constitute part of an eight‐member Bacillus anthracis operon, and studies with recombinant IsdK demonstrate specific binding to haemoglobin.
Abstract: Summary Three iron-regulated surface determinant (Isd) pro- teins, containing NEAr Transporter (NEAT) domains (GBAA4789-7), constitute part of an eight-member Bacillus anthracis operon. GBAA4789 (IsdC), previ- ously characterized by others as a haem-binding protein, and two novel Isd proteins characterized in this study, GBAA4788 (IsdJ) and GBAA4787 (IsdK) proteins, can be translated from two alternative overlapping transcriptional units. The three NEAT- containing Isd proteins are shown to be expressed in vivo during B. anthracis infection. Expression in vitro is regulated by iron ions independent of the virulence plasmids pXO1 and pXO2, yet their pres- ence affects the range of response to iron ion concentration. The expression of IsdC, J and K is strongly repressed under high CO2 tension, condi- tions that are optimal for B. anthracis toxin and capsule expression, suggesting that these Isd pro- teins are elements of a B. anthracis 'air-regulon'. Deletion mutants of isdC, isdK or the entire isdCJK locus are as virulent and pathogenic to guinea pigs as the fully virulent wild-type Vollum strain. The isdC- deleted mutant is defective in sequestration of haemin, consistent with previous biochemical obser- vations, while the DisdK mutant is defective in hae- moglobin uptake. Studies with recombinant IsdK demonstrate specific binding to haemoglobin.

Journal ArticleDOI
TL;DR: These molecular and cellular responses occur in macrophages engaged in antiinflammatory G protein-coupled receptor activation, thus illustrating a common signaling circuitry controlling resolution of inflammation and host cell hijacking by B. anthracis.
Abstract: Bacillus anthracis, the etiologic agent of anthrax, avoids immune surveillance and commandeers host macrophages as a vehicle for lymphatic spreading. Here, we show that B. anthracis edema toxin (ET), via its adenylyl cyclase activity, dramatically increases the motility of infected macrophages and the expression of vascular endothelial growth factor. The transcription factor CREB and the syndecan-1 gene, a CREB target, play crucial roles in ET-induced macrophage migration. These molecular and cellular responses occur in macrophages engaged in antiinflammatory G protein-coupled receptor activation, thus illustrating a common signaling circuitry controlling resolution of inflammation and host cell hijacking by B. anthracis.

Journal ArticleDOI
13 Aug 2008-PLOS ONE
TL;DR: A significant role is suggested for anthrax toxins in thwarting the BBB innate defense response promoting penetration of bacteria into the central nervous system.
Abstract: Background: Anthrax meningitis is the main neurological complication of systemic infection with Bacillus anthracis approaching 100% mortality. The presence of bacilli in brain autopsies indicates that vegetative bacteria are able to breach the blood-brain barrier (BBB). The BBB represents not only a physical barrier but has been shown to play an active role in initiating a specific innate immune response that recruits neutrophils to the site of infection. Currently, the basic pathogenic mechanisms by which B. anthracis penetrates the BBB and causes anthrax meningitis are poorly understood. Methodology/Principal Findings: Using an in vitro BBB model, we show for the first time that B. anthracis efficiently invades human brain microvascular endothelial cells (hBMEC), the single cell layer that comprises the BBB. Furthermore, transcriptional profiling of hBMEC during infection with B. anthracis revealed downregulation of 270 (87%) genes, specifically key neutrophil chemoattractants IL-8, CXCL1 (Groα) and CXCL2 (Groβ), thereby strongly contrasting hBMEC responses observed with other meningeal pathogens. Further studies using specific anthrax toxin-mutants, quantitative RT-PCR, ELISA and in vivo assays indicated that anthrax toxins actively suppress chemokine production and neutrophil recruitment during infection, allowing unrestricted proliferation and dissemination of the bacteria. Finally, mice challenged with B. anthracis Sterne, but not the toxin-deficient strain, developed meningitis. Conclusions/Significance: These results suggest a significant role for anthrax toxins in thwarting the BBB innate defense response promoting penetration of bacteria into the central nervous system. Furthermore, establishment of a mouse model for anthrax meningitis will aid in our understanding of disease pathogenesis and development of more effective treatment strategies. © 2008 van Sorge et al.

Journal ArticleDOI
TL;DR: To determine the wet and dry density of spores of Bacillus anthracis and compare these values with the densities of other Bacillus species grown and sporulated under similar conditions.
Abstract: Aims: To determine the wet and dry density of spores of Bacillus anthracis and compare these values with the densities of other Bacillus species grown and sporulated under similar conditions. Methods and Results: We prepared and studied spores from several Bacillus species, including four virulent and three attenuated strains of B. anthracis, two Bacillus species commonly used to simulate B. anthracis (Bacillus atrophaeus and Bacillus subtilis) and four close neighbours (Bacillus cereus, Bacillus megaterium, Bacillus thuringiensis and Bacillus stearothermophilus), using identical media, protocols and instruments. We determined the wet densities of all spores by measuring their buoyant density in gradients of Percoll and their dry density in gradients of two organic solvents, one of high and the other of low chemical density. The wet density of different strains of B. anthracis fell into two different groups. One group comprised strains of B. anthracis producing spores with densities between 1·162 and 1·165 g ml−1 and the other group included strains whose spores showed higher density values between 1·174 and 1·186 g ml−1. Both Bacillus atrophaeus and B. subtilis were denser than all the B. anthracis spores studied. Interestingly and in spite of the significant differences in wet density, the dry densities of all spore species and strains were similar. In addition, we correlated the spore density with spore volume derived from measurements made by electron microscopy analysis. There was a strong correlation (R2 = 0·95) between density and volume for the spores of all strains and species studied. Conclusions: The data presented here indicate that the two commonly used simulants of B. anthracis, B. atrophaeus and B. subtilis were considerably denser and smaller than all B. anthracis spores studied and hence, these simulants could behave aerodynamically different than B. anthracis. Bacillus thuringiensis had spore density and volume within the range observed for the various strains of B. anthracis. The clear correlation between wet density and volume of the B. anthracis spores suggest that mass differences among spore strains may be because of different amounts of water contained within wet dormant spores. Significance and Impact of the Study: Spores of nonvirulent Bacillus species are often used as simulants in the development and testing of countermeasures for biodefense against B. anthracis. The similarities and difference in density and volume that we found should assist in the selection of simulants that better resemble properties of B. anthracis and, thus more accurately represent the performance of countermeasures against this threat agent where spore density, size, volume, mass or related properties are relevant.

Journal ArticleDOI
TL;DR: This overview of mucosal immunity and how its cellular component(s), particularly dendritic cells, can be specifically targeted to deliver immunogenic subunits, such as the protective antigen from Bacillus anthracis (the causative agent of anthrax) is focused on.
Abstract: The use of vaccines against infectious microbes has been critical to the advancement of medicine. Vaccine strategies combined with, or without, adjuvants have been established to eradicate various bacterial and viral pathogens. A new generation of vaccines is being developed using specific strains of Gram-positive, lactic acid bacteria and, notably, some probiotic lactobacilli. These bacteria have been safely consumed by humans for centuries in fermented foods. Thus, they can be orally administered, are well tolerated by recipients and could be easily and economically provided to large populations. In this overview, we focus on mucosal immunity and how its cellular component(s), particularly dendritic cells, can be specifically targeted to deliver immunogenic subunits, such as the protective antigen from Bacillus anthracis (the causative agent of anthrax). An antigen-specific immune response can be elicited using specific strains of Lactobacillus acidophilus expressing the protective antigen. A mucosal, dendritic cell-targeted approach increases the bioavailability of an immunogen of interest when delivered orally by L. acidophilus. This provides an efficiently elegant natural strategy and serves a dual function as an immune-stimulating adjuvant in vivo.

Journal ArticleDOI
TL;DR: The genome sequence of a Bacillus anthracis-specific clear plaque mutant phage, AP50c, contains 31 open reading frames spanning 14,398 bp, has two mutations compared to wild-type AP50t, and has a colinear genome architecture highly similar to that of gram-positive Tectiviridae phages.
Abstract: The genome sequence of a Bacillus anthracis-specific clear plaque mutant phage, AP50c, contains 31 open reading frames spanning 14,398 bp, has two mutations compared to wild-type AP50t, and has a colinear genome architecture highly similar to that of gram-positive Tectiviridae phages. Spontaneous AP50c-resistant B. anthracis mutants exhibit a mucoid colony phenotype.

Journal ArticleDOI
TL;DR: This study developed a zebrafish model that permits in vivo imaging and evaluation of vasculature and cardiovascular function, and demonstrated increased endothelial permeability as an early consequence of toxin action and the need for further investigation of the cardiovascular component of human anthrax disease.
Abstract: Vascular dysfunction has been reported in human cases of anthrax, in mammalian models of Bacillus anthracis, and in animals injected with anthrax toxin proteins To examine anthrax lethal toxin effects on intact blood vessels, we developed a zebrafish model that permits in vivo imaging and evaluation of vasculature and cardiovascular function Vascular defects monitored in hundreds of embryos enabled us to define four stages of phenotypic progression leading to circulatory dysfunction We demonstrated increased endothelial permeability as an early consequence of toxin action by tracking the extravasation of fluorescent microspheres in toxin-injected embryos Lethal toxin did not induce a significant amount of cell death in embryonic tissues or blood vessels, as shown by staining with acridine orange, and endothelial cells in lethal toxin-injected embryos continued to divide at the normal rate Vascular permeability is strongly affected by the VEGF/vascular permeability factor (VPF) signaling pathway, and we were able to attenuate anthrax lethal toxin effects with chemical inhibitors of VEGFR function Our study demonstrates the importance of vascular permeability in anthrax lethal toxin action and the need for further investigation of the cardiovascular component of human anthrax disease

Journal ArticleDOI
TL;DR: The new platform technology presented here is a highly attractive alternative method for DNA extraction and the fast detection of gram-positive bacteria and potentially other pathogenic species and cells as well.
Abstract: The use of a combination of low-cost technologies to both extract and detect anthrax DNA from spores and vegetative cells in two steps within 1 min is described. In a cavity, microwave energy is highly focused using thin-film aluminum “bow-tie” structures, to extract DNA from whole spores within 20 s. The detection of the released DNA, from less than 1000 vegetative cells, without additional preprocessing steps is accomplished in an additional 30 s by employing the microwave-accelerated metal-enhanced fluorescence technique. The new platform technology presented here is a highly attractive alternative method for DNA extraction and the fast detection of Gram-positive bacteria and potentially other pathogenic species and cells as well.

Journal ArticleDOI
TL;DR: It is reported that CapD promoted in vivo phagocytic killing of B. anthracis bacilli by mouse peritoneal neutrophils and that parenteral administration of CapD protected mice in two models of anthrax infection, which support the proposed role of capsule in B. Anthracis virulence and suggest that strategies to target anthrax b Bacilli for neutrophil killing may lead to novel postexposure therapies.
Abstract: Bacillus anthracis produces an antiphagocytic gamma-linked poly-D-glutamic acid capsule that is required for virulence. Capsule depolymerase (CapD) is a membrane-associated poly-gamma-glutamate-specific depolymerase encoded on the B. anthracis capsule plasmid, pX02, that is reported to contribute to virulence by anchoring the capsule to the peptidoglycan and partially degrading high-molecular-weight capsule from the bacterial surface. We previously demonstrated that treatment with CapD effectively removes the capsule from anthrax bacilli, rendering them susceptible to phagocytic killing in vitro. Here we report that CapD promoted in vivo phagocytic killing of B. anthracis bacilli by mouse peritoneal neutrophils and that parenteral administration of CapD protected mice in two models of anthrax infection. CapD conferred significant protection compared with controls when coinjected with encapsulated bacilli from fully virulent B. anthracis Ames or the nontoxigenic encapsulated strain Delta Ames and when injected 10 min after infection with encapsulated bacilli from B. anthracis Ames. Protection was also observed when CapD was administered 30 h after infection with B. anthracis Delta Ames spores, while significant protection could not be demonstrated following challenge with B. anthracis Ames spores. These data support the proposed role of capsule in B. anthracis virulence and suggest that strategies to target anthrax bacilli for neutrophil killing may lead to novel postexposure therapies.

Journal ArticleDOI
TL;DR: It is shown for the first time that internalized spores were able to survive and that spores could translocate across an A549 cell barrier from the apical side to the basolateral side without disrupting the barrier integrity, suggesting a transcellular route.
Abstract: Dissemination of Bacillus anthracis spores from the lung is a critical early event in the establishment of inhalational anthrax. We recently reported that B. anthracis could adhere to and be internalized by cultured intestinal epithelial and fibroblast cells. Here, using gentamicin protection assays and/or electron microscopy, we found that Sterne strain 7702 spores were able to adhere to and subsequently be internalized by polarized A549 cells and primary human small airway epithelial cells. We showed for the first time that internalized spores were able to survive and that spores could translocate across an A549 cell barrier from the apical side to the basolateral side without disrupting the barrier integrity, suggesting a transcellular route. In addition, dormant spores of fully virulent Ames and UT500 strains were able to adhere to A549 cells at a frequency similar to that of 7702, whereas the capsule in germinated Ames and UT500 spores prevented adherence. Fluorescence microscopy also revealed that dormant Ames spores were internalized at a frequency similar to that of 7702. These findings highlight the possibility of a novel route of dissemination in which B. anthracis utilizes epithelial cells of the lung. The implications of these results to B. anthracis pathogenesis are discussed.

Journal ArticleDOI
TL;DR: A novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold is described, revealing several features that can be exploited for further development of this lead series.
Abstract: Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 A resolution. The structure reveals several features that can be exploited for further development of this lead series.

Journal ArticleDOI
TL;DR: Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains, and cell wall glycosyl compositions differed from one another in a plasmid-dependent manner.
Abstract: Members of the Bacillus cereus group contain cell wall carbohydrates that vary in their glycosyl compositions. Recent multilocus sequence typing (MLST) refined the relatedness of B. cereus group members by separating them into clades and lineages. Based on MLST, we selected several B. anthracis, B. cereus, and B. thuringiensis strains and compared their cell wall carbohydrates. The cell walls of different B. anthracis strains (clade 1/Anthracis) were composed of glucose (Glc), galactose (Gal), N-acetyl mannosamine (ManNAc), and N-acetylglucosamine (GlcNAc). In contrast, the cell walls from clade 2 strains (B. cereus type strain ATCC 14579 and B. thuringiensis strains) lacked Gal and contained N-acetylgalactosamine (GalNAc). The B. cereus clade 1 strains had cell walls that were similar in composition to B. anthracis in that they all contained Gal. However, the cell walls from some clade 1 strains also contained GalNAc, which was not present in B. anthracis cell walls. Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains. It was also observed that B. anthracis strains cell wall glycosyl compositions differed from one another in a plasmid-dependent manner. When plasmid pXO2 was absent, the ManNAc/Gal ratio decreased, while the Glc/Gal ratio increased. Also, deletion of atxA, a global regulatory gene, from a pXO2− strain resulted in cell walls with an even greater level of Glc.

Journal ArticleDOI
12 Nov 2008-PLOS ONE
TL;DR: Peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so, suggesting that the inflammatory events associated with peptidogly can may play an important role in anthrax pathogenesis.
Abstract: We hypothesized that the peptidoglycan component of B. anthracis may play a critical role in morbidity and mortality associated with inhalation anthrax. To explore this issue, we purified the peptidoglycan component of the bacterial cell wall and studied the response of human peripheral blood cells. The purified B. anthracis peptidoglycan was free of non-covalently bound protein but contained a complex set of amino acids probably arising from the stem peptide. The peptidoglycan contained a polysaccharide that was removed by mild acid treatment, and the biological activity remained with the peptidoglycan and not the polysaccharide. The biological activity of the peptidoglycan was sensitive to lysozyme but not other hydrolytic enzymes, showing that the activity resides in the peptidoglycan component and not bacterial DNA, RNA or protein. B. anthracis peptidoglycan stimulated monocytes to produce primarily TNFα; neutrophils and lymphocytes did not respond. Peptidoglycan stimulated monocyte p38 mitogen-activated protein kinase and p38 activity was required for TNFα production by the cells. We conclude that peptidoglycan in B. anthracis is biologically active, that it stimulates a proinflammatory response in monocytes, and uses the p38 kinase signal transduction pathway to do so. Given the high bacterial burden in pulmonary anthrax, these findings suggest that the inflammatory events associated with peptidoglycan may play an important role in anthrax pathogenesis.

Journal ArticleDOI
TL;DR: The use of one or both of the safe and easy-to-handle surrogates identified here should help in developing safer and more-effective sporicides and also in evaluating the field effectiveness of existing and newer formulations in the decontamination of objects and surfaces suspected of B. anthracis contamination.
Abstract: The spores of six strains of Bacillus anthracis (four virulent and two avirulent) were compared with those of four other types of spore-forming bacteria for their resistance to four liquid chemical sporicides (sodium hypochlorite at 5,000 ppm available chlorine, 70,000 ppm accelerated H2O2, 1,000 ppm chlorine dioxide, and 3,000 ppm peracetic acid). All test bacteria were grown in a 1:10 dilution of Columbia broth (with manganese) incubated at 37°C for 72 h. The spore suspensions, heat treated at 80°C for 10 min to rid them of any viable vegetative cells, contained 1 × 108 to 3 × 108 CFU/ml. The second tier of the quantitative carrier test (QCT-2), a standard of ASTM International, was used to assess for sporicidal activity, with disks (1 cm in diameter) of brushed and magnetized stainless steel as spore carriers. Each carrier, with 10 μl (≥106 CFU) of the test spore suspension in a soil load, was dried and then overlaid with 50 μl of the sporicide being evaluated. The contact time at room temperature ranged from 5 to 20 min, and the arbitrarily set criterion for acceptable sporicidal activity was a reduction of ≥106 in viable spore count. Each test was repeated at least three times. In the final analysis, the spores of Bacillus licheniformis (ATCC 14580T) and Bacillus subtilis (ATCC 6051T) proved to be generally more resistant than the spores of the strains of B. anthracis tested. The use of one or both of the safe and easy-to-handle surrogates identified here should help in developing safer and more-effective sporicides and also in evaluating the field effectiveness of existing and newer formulations in the decontamination of objects and surfaces suspected of B. anthracis contamination.

Journal ArticleDOI
19 Sep 2008-Vaccine
TL;DR: EP may be a valuable platform technology for the delivery of DNA vaccines against anthrax and other biothreat agents because the delivery procedure is particularly dose efficient and thus favorable for achieving target levels of response following vaccine administration in humans.