scispace - formally typeset
Search or ask a question

Showing papers on "Epigenetics published in 2007"


Journal Article
TL;DR: The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery as discussed by the authors.
Abstract: MicroRNA (miRNA) alterations are involved in the initiation and progression of human cancer. The causes of the widespread differential expression of miRNA genes in malignant compared with normal cells can be explained by the location of these genes in cancer-associated genomic regions, by epigenetic mechanisms and by alterations in the miRNA processing machinery. MiRNA-expression profiling of human tumours has identified signatures associated with diagnosis, staging, progression, prognosis and response to treatment. In addition, profiling has been exploited to identify miRNA genes that might represent downstream targets of activated oncogenic pathways, or that target protein- coding genes involved in cancer.

6,306 citations


Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: Recent advances in understanding how epigenetic alterations participate in the earliest stages of neoplasia, including stem/precursor cell contributions, are reviewed and the growing implications of these advances for strategies to control cancer are discussed.

4,269 citations


Journal ArticleDOI
TL;DR: An increasing body of evidence from animal studies supports the role of environmental epigenetics in disease susceptibility and recent studies have demonstrated for the first time that heritable environmentally induced epigenetic modifications underlie reversible transgenerational alterations in phenotype.
Abstract: Epidemiological evidence increasingly suggests that environmental exposures early in development have a role in susceptibility to disease in later life. In addition, some of these environmental effects seem to be passed on through subsequent generations. Epigenetic modifications provide a plausible link between the environment and alterations in gene expression that might lead to disease phenotypes. An increasing body of evidence from animal studies supports the role of environmental epigenetics in disease susceptibility. Furthermore, recent studies have demonstrated for the first time that heritable environmentally induced epigenetic modifications underlie reversible transgenerational alterations in phenotype. Methods are now becoming available to investigate the relevance of these phenomena to human disease.

2,271 citations


Journal ArticleDOI
TL;DR: It is time to 'upgrade' cancer epigenetics research and put together an ambitious plan to tackle the many unanswered questions in this field using epigenomics approaches.
Abstract: An altered pattern of epigenetic modifications is central to many common human diseases, including cancer. Many studies have explored the mosaic patterns of DNA methylation and histone modification in cancer cells on a gene-by-gene basis; among their results has been the seminal finding of transcriptional silencing of tumour-suppressor genes by CpG-island-promoter hypermethylation. However, recent technological advances are now allowing cancer epigenetics to be studied genome-wide — an approach that has already begun to provide both biological insight and new avenues for translational research. It is time to 'upgrade' cancer epigenetics research and put together an ambitious plan to tackle the many unanswered questions in this field using epigenomics approaches.

2,080 citations


Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: Current research efforts are reviewed, with an emphasis on large-scale studies, emerging technologies, and challenges ahead.

2,035 citations


Journal ArticleDOI
Wolf Reik1
24 May 2007-Nature
TL;DR: During development, cells start in a pluripotent state, from which they can differentiate into many cell types, and progressively develop a narrower potential, and their gene-expression programmes become more defined, restricted and, potentially, 'locked in'.
Abstract: During development, cells start in a pluripotent state, from which they can differentiate into many cell types, and progressively develop a narrower potential. Their gene-expression programmes become more defined, restricted and, potentially, 'locked in'. Pluripotent stem cells express genes that encode a set of core transcription factors, while genes that are required later in development are repressed by histone marks, which confer short-term, and therefore flexible, epigenetic silencing. By contrast, the methylation of DNA confers long-term epigenetic silencing of particular sequences--transposons, imprinted genes and pluripotency-associated genes--in somatic cells. Long-term silencing can be reprogrammed by demethylation of DNA, and this process might involve DNA repair. It is not known whether any of the epigenetic marks has a primary role in determining cell and lineage commitment during development.

1,937 citations


Journal ArticleDOI
TL;DR: How the tumor microenvironment may be involved in the resistance of solid tumors to chemotherapy and potential strategies to improve the effectiveness of drug treatment by modifying factors relating to the tumormicroenvironment are described.
Abstract: Resistance of human tumors to anticancer drugs is most often ascribed to gene mutations, gene amplification, or epigenetic changes that influence the uptake, metabolism, or export of drugs from single cells. Another important yet little-appreciated cause of anticancer drug resistance is the limited ability of drugs to penetrate tumor tissue and to reach all of the tumor cells in a potentially lethal concentration. To reach all viable cells in the tumor, anticancer drugs must be delivered efficiently through the tumor vasculature, cross the vessel wall, and traverse the tumor tissue. In addition, heterogeneity within the tumor microenvironment leads to marked gradients in the rate of cell proliferation and to regions of hypoxia and acidity, all of which can influence the sensitivity of the tumor cells to drug treatment. In this review, we describe how the tumor microenvironment may be involved in the resistance of solid tumors to chemotherapy and discuss potential strategies to improve the effectiveness of drug treatment by modifying factors relating to the tumor microenvironment.

1,889 citations


Journal ArticleDOI
TL;DR: Genome-wide analysis of two key histone modifications indicated that iPS cells are highly similar to ES cells, and data show that transcription factor-induced reprogramming leads to the global reversion of the somatic epigenome into an ES-like state.

1,837 citations


Journal ArticleDOI
TL;DR: New insights have been gained into how silencing in eukaryotic cells has been co-opted to serve essential functions in 'host' cells, highlighting the importance of TEs in the epigenetic regulation of the genome.
Abstract: Overlapping epigenetic mechanisms have evolved in eukaryotic cells to silence the expression and mobility of transposable elements (TEs). Owing to their ability to recruit the silencing machinery, TEs have served as building blocks for epigenetic phenomena, both at the level of single genes and across larger chromosomal regions. Important progress has been made recently in understanding these silencing mechanisms. In addition, new insights have been gained into how this silencing has been co-opted to serve essential functions in 'host' cells, highlighting the importance of TEs in the epigenetic regulation of the genome.

1,823 citations


Journal ArticleDOI
TL;DR: The enforced expression of miR-29s in lung cancer cell lines restores normal patterns of DNA methylation, induces reexpression of methylation-silenced tumor suppressor genes, and inhibits tumorigenicity in vitro and in vivo.
Abstract: MicroRNAs (miRNAs) are small, noncoding RNAs that regulate expression of many genes. Recent studies suggest roles of miRNAs in carcinogenesis. We and others have shown that expression profiles of miRNAs are different in lung cancer vs. normal lung, although the significance of this aberrant expression is poorly understood. Among the reported down-regulated miRNAs in lung cancer, the miRNA (miR)-29 family (29a, 29b, and 29c) has intriguing complementarities to the 3′-UTRs of DNA methyltransferase (DNMT)3A and -3B (de novo methyltransferases), two key enzymes involved in DNA methylation, that are frequently up-regulated in lung cancer and associated with poor prognosis. We investigated whether miR-29s could target DNMT3A and -B and whether restoration of miR-29s could normalize aberrant patterns of methylation in non-small-cell lung cancer. Here we show that expression of miR-29s is inversely correlated to DNMT3A and -3B in lung cancer tissues, and that miR-29s directly target both DNMT3A and -3B. The enforced expression of miR-29s in lung cancer cell lines restores normal patterns of DNA methylation, induces reexpression of methylation-silenced tumor suppressor genes, such as FHIT and WWOX, and inhibits tumorigenicity in vitro and in vivo. These findings support a role of miR-29s in epigenetic normalization of NSCLC, providing a rationale for the development of miRNA-based strategies for the treatment of lung cancer.

1,608 citations


Journal ArticleDOI
23 May 2007-Nature
TL;DR: This model proposes that hereditary disorders of the epigenetic apparatus lead to developmental defects, that cancer epigenetics involves disruption of the stem-cell programme, and that common diseases with late-onset phenotypes involve interactions between the epigenome, the genome and the environment.
Abstract: It is becoming clear that epigenetic changes are involved in human disease as well as during normal development. A unifying theme of disease epigenetics is defects in phenotypic plasticity--cells' ability to change their behaviour in response to internal or external environmental cues. This model proposes that hereditary disorders of the epigenetic apparatus lead to developmental defects, that cancer epigenetics involves disruption of the stem-cell programme, and that common diseases with late-onset phenotypes involve interactions between the epigenome, the genome and the environment. Increased understanding of epigenetic-disease mechanisms could lead to disease-risk stratification for targeted intervention and to targeted therapies.

Journal ArticleDOI
TL;DR: This review summarizes recent evidence for the existence of sustained epigenetic mechanisms of gene regulation in neurons that have been implicated in the regulation of complex behaviour, including abnormalities in several psychiatric disorders such as depression, drug addiction and schizophrenia.
Abstract: Many neurological and most psychiatric disorders are not due to mutations in a single gene; rather, they involve molecular disturbances entailing multiple genes and signals that control their expression. Recent research has demonstrated that complex 'epigenetic' mechanisms, which regulate gene activity without altering the DNA code, have long-lasting effects within mature neurons. This review summarizes recent evidence for the existence of sustained epigenetic mechanisms of gene regulation in neurons that have been implicated in the regulation of complex behaviour, including abnormalities in several psychiatric disorders such as depression, drug addiction and schizophrenia.

Journal ArticleDOI
21 Sep 2007-Science
TL;DR: The data suggest that UHRF1 may help recruit DNMT1 to hemimethylated DNA to facilitate faithful maintenance of DNA methylation.
Abstract: Epigenetic inheritance in mammals relies in part on robust propagation of DNA methylation patterns throughout development. We show that the protein UHRF1 (ubiquitin-like, containing PHD and RING finger domains 1), also known as NP95 in mouse and ICBP90 in human, is required for maintaining DNA methylation. UHRF1 colocalizes with the maintenance DNA methyltransferase protein DNMT1 throughout S phase. UHRF1 appears to tether DNMT1 to chromatin through its direct interaction with DNMT1. Furthermore UHRF1 contains a methyl DNA binding domain, the SRA (SET and RING associated) domain, that shows strong preferential binding to hemimethylated CG sites, the physiological substrate for DNMT1. These data suggest that UHRF1 may help recruit DNMT1 to hemimethylated DNA to facilitate faithful maintenance of DNA methylation.

Journal ArticleDOI
TL;DR: This paper showed that maternal exposure to bisphenol A (BPA), a high-production-volume chemical used in the manufacture of polycarbonate plastic, is associated with higher body weight, increased breast and prostate cancer, and altered reproductive function.
Abstract: The hypothesis of fetal origins of adult disease posits that early developmental exposures involve epigenetic modifications, such as DNA methylation, that influence adult disease susceptibility. In utero or neonatal exposure to bisphenol A (BPA), a high-production-volume chemical used in the manufacture of polycarbonate plastic, is associated with higher body weight, increased breast and prostate cancer, and altered reproductive function. This study shows that maternal exposure to this endocrine-active compound shifted the coat color distribution of viable yellow agouti (Avy) mouse offspring toward yellow by decreasing CpG (cytosine-guanine dinucleotide) methylation in an intracisternal A particle retrotransposon upstream of the Agouti gene. CpG methylation also was decreased at another metastable locus, the CDK5 activator-binding protein (CabpIAP). DNA methylation at the Avy locus was similar in tissues from the three germ layers, providing evidence that epigenetic patterning during early stem cell development is sensitive to BPA exposure. Moreover, maternal dietary supplementation, with either methyl donors like folic acid or the phytoestrogen genistein, negated the DNA hypomethylating effect of BPA. Thus, we present compelling evidence that early developmental exposure to BPA can change offspring phenotype by stably altering the epigenome, an effect that can be counteracted by maternal dietary supplements.

Journal ArticleDOI
06 Dec 2007-Nature
TL;DR: It is shown that localization of mouse Np95 to replicating heterochromatin is dependent on the presence of hemi-methylated DNA and the link between Np 95 and Dnmt1 establishes key steps of the mechanism for epigenetic inheritance of DNA methylation.
Abstract: DNA methyltransferase (cytosine-5) 1 (Dnmt1) is the principal enzyme responsible for maintenance of CpG methylation and is essential for the regulation of gene expression, silencing of parasitic DNA elements, genomic imprinting and embryogenesis. Dnmt1 is needed in S phase to methylate newly replicated CpGs occurring opposite methylated ones on the mother strand of the DNA, which is essential for the epigenetic inheritance of methylation patterns in the genome. Despite an intrinsic affinity of Dnmt1 for such hemi-methylated DNA, the molecular mechanisms that ensure the correct loading of Dnmt1 onto newly replicated DNA in vivo are not understood. The Np95 (also known as Uhrf1 and ICBP90) protein binds methylated CpG through its SET and RING finger-associated (SRA) domain. Here we show that localization of mouse Np95 to replicating heterochromatin is dependent on the presence of hemi-methylated DNA. Np95 forms complexes with Dnmt1 and mediates the loading of Dnmt1 to replicating heterochromatic regions. By using Np95-deficient embryonic stem cells and embryos, we show that Np95 is essential in vivo to maintain global and local DNA methylation and to repress transcription of retrotransposons and imprinted genes. The link between hemi-methylated DNA, Np95 and Dnmt1 thus establishes key steps of the mechanism for epigenetic inheritance of DNA methylation.

Journal ArticleDOI
TL;DR: The data suggest that expression of Foxp3 must be stabilized by epigenetic modification to allow the development of a permanent suppressor cell lineage, a finding of significant importance for therapeutic applications involving induction or transfer of Tregs and for the understanding of long-term cell lineage decisions.
Abstract: Compelling evidence suggests that the transcription factor Foxp3 acts as a master switch governing the development and function of CD4+ regulatory T cells (Tregs). However, whether transcriptional control of Foxp3 expression itself contributes to the development of a stable Treg lineage has thus far not been investigated. We here identified an evolutionarily conserved region within the foxp3 locus upstream of exon-1 possessing transcriptional activity. Bisulphite sequencing and chromatin immunoprecipitation revealed complete demethylation of CpG motifs as well as histone modifications within the conserved region in ex vivo isolated Foxp3+CD25+CD4+ Tregs, but not in naive CD25−CD4+ T cells. Partial DNA demethylation is already found within developing Foxp3+ thymocytes; however, Tregs induced by TGF-β in vitro display only incomplete demethylation despite high Foxp3 expression. In contrast to natural Tregs, these TGF-β–induced Foxp3+ Tregs lose both Foxp3 expression and suppressive activity upon restimulation in the absence of TGF-β. Our data suggest that expression of Foxp3 must be stabilized by epigenetic modification to allow the development of a permanent suppressor cell lineage, a finding of significant importance for therapeutic applications involving induction or transfer of Tregs and for the understanding of long-term cell lineage decisions.

Journal ArticleDOI
TL;DR: The link between a chromatin modulator and leukaemia stem cells provides support for epigenetic landscapes as an important part ofLeukaemia and normal stem-cell development.
Abstract: Translocations that involve the mixed lineage leukaemia (MLL) gene identify a unique group of acute leukaemias, and often predict a poor prognosis. The MLL gene encodes a DNA-binding protein that methylates histone H3 lysine 4 (H3K4), and positively regulates gene expression including multiple Hox genes. Leukaemogenic MLL translocations encode MLL fusion proteins that have lost H3K4 methyltransferase activity. A key feature of MLL fusion proteins is their ability to efficiently transform haematopoietic cells into leukaemia stem cells. The link between a chromatin modulator and leukaemia stem cells provides support for epigenetic landscapes as an important part of leukaemia and normal stem-cell development.

Journal ArticleDOI
15 Mar 2007-Neuron
TL;DR: The results demonstrate that DNA methylation is dynamically regulated in the adult nervous system and that this cellular mechanism is a crucial step in memory formation.

Journal ArticleDOI
TL;DR: It is hypothesized that cell chromatin patterns and transient silencing of these important regulatory genes in stem or progenitor cells may leave these genes vulnerable to aberrant DNA hypermethylation and heritable gene silencing during tumor initiation and progression.
Abstract: Adult cancers may derive from stem or early progenitor cells. Epigenetic modulation of gene expression is essential for normal function of these early cells but is highly abnormal in cancers, which often show aberrant promoter CpG island hypermethylation and transcriptional silencing of tumor suppressor genes and pro-differentiation factors. We find that for such genes, both normal and malignant embryonic cells generally lack the hypermethylation of DNA found in adult cancers. In embryonic stem cells, these genes are held in a 'transcription-ready' state mediated by a 'bivalent' promoter chromatin pattern consisting of the repressive mark, histone H3 methylated at Lys27 (H3K27) by Polycomb group proteins, plus the active mark, methylated H3K4. However, embryonic carcinoma cells add two key repressive marks, dimethylated H3K9 and trimethylated H3K9, both associated with DNA hypermethylation in adult cancers. We hypothesize that cell chromatin patterns and transient silencing of these important regulatory genes in stem or progenitor cells may leave these genes vulnerable to aberrant DNA hypermethylation and heritable gene silencing during tumor initiation and progression.

Journal ArticleDOI
TL;DR: It is reported that stem cell Polycomb group targets are up to 12-fold more likely to have cancer-specific promoter DNA hypermethylation than non-targets, supporting a stem cell origin of cancer in which reversible gene repression is replaced by permanent silencing, locking the cell into a perpetual state of self-renewal and thereby predisposing to subsequent malignant transformation.
Abstract: Embryonic stem cells rely on Polycomb group proteins to reversibly repress genes required for differentiation. We report that stem cell Polycomb group targets are up to 12-fold more likely to have cancer-specific promoter DNA hypermethylation than non-targets, supporting a stem cell origin of cancer in which reversible gene repression is replaced by permanent silencing, locking the cell into a perpetual state of self-renewal and thereby predisposing to subsequent malignant transformation.

Journal ArticleDOI
TL;DR: The association between inflammation and cancer is strengthened and discovery of an interaction between microRNAs and innate immunity during inflammation has further strengthened the association.
Abstract: Infection and chronic inflammation contribute to about 1 in 4 of all cancer cases. Mediators of the inflammatory response, e.g., cytokines, free radicals, prostaglandins and growth factors, can induce genetic and epigenetic changes including point mutations in tumor suppressor genes, DNA methylation and post-translational modifications, causing alterations in critical pathways responsible for maintaining the normal cellular homeostasis and leading to the development and progression of cancer. Recent discovery of an interaction between microRNAs and innate immunity during inflammation has further strengthened the association between inflammation and cancer.

Journal ArticleDOI
TL;DR: Interestingly, this work functionally link the epigenetic loss of miRNA-124a with the activation of cyclin D kinase 6, a bona fide oncogenic factor, and the phosphorylation of the retinoblastoma, a tumor suppressor gene.
Abstract: The mechanisms underlying microRNA (miRNA) disruption in human disease are poorly understood. In cancer cells, the transcriptional silencing of tumor suppressor genes by CpG island promoter hypermethylation has emerged as a common hallmark. We wondered if the same epigenetic disruption can "hit" miRNAs in transformed cells. To address this issue, we have used cancer cells genetically deficient for the DNA methyltransferase enzymes in combination with a miRNA expression profiling. We have observed that DNA hypomethylation induces a release of miRNA silencing in cancer cells. One of the main targets is miRNA-124a, which undergoes transcriptional inactivation by CpG island hypermethylation in human tumors from different cell types. Interestingly, we functionally link the epigenetic loss of miRNA-124a with the activation of cyclin D kinase 6, a bona fide oncogenic factor, and the phosphorylation of the retinoblastoma, a tumor suppressor gene.

Journal ArticleDOI
TL;DR: Polycomb group complexes, which are known to regulate homeotic genes, have been found to control hundreds of other genes in mammals and insects, and function as global enforcers of epigenetically repressed states.
Abstract: Polycomb group complexes, which are known to regulate homeotic genes, have now been found to control hundreds of other genes in mammals and insects. First believed to progressively assemble and package chromatin, they are now thought to be localized, but induce a methylation mark on histone H3 over a broad chromatin domain. Recent progress has changed our view of how these complexes are recruited, and how they affect chromatin and repress gene activity. Polycomb complexes function as global enforcers of epigenetically repressed states, balanced by an antagonistic state that is mediated by Trithorax. These epigenetic states must be reprogrammed when cells become committed to differentiation.

Journal ArticleDOI
21 Sep 2007-Cell
TL;DR: The discovery of an inducible enzyme that erases a histone mark controlling differentiation and cell identity provides a link between inflammation and reprogramming of the epigenome, which could be the basis for macrophage plasticity and might explain the differentiation abnormalities in chronic inflammation.

Journal ArticleDOI
TL;DR: The myriad roles of MEF2 in development and the mechanisms through which it couples developmental, physiological and pathological signals with programs of cell-specific transcription are reviewed.
Abstract: The myocyte enhancer factor 2 (MEF2) transcription factor acts as a lynchpin in the transcriptional circuits that control cell differentiation and organogenesis. The spectrum of genes activated by MEF2 in different cell types depends on extracellular signaling and on co-factor interactions that modulate MEF2 activity. Recent studies have revealed MEF2 to form an intimate partnership with class IIa histone deacetylases, which together function as a point of convergence of multiple epigenetic regulatory mechanisms. We review the myriad roles of MEF2 in development and the mechanisms through which it couples developmental, physiological and pathological signals with programs of cell-specific transcription.

Journal ArticleDOI
TL;DR: The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes.
Abstract: A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B12 and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure–effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes.

Journal ArticleDOI
TL;DR: These studies show that hematopoietic stem cells are not protected from aging, and loss of epigenetic regulation at the chromatin level may drive both functional attenuation of cells, as well as other manifestations of aging, including the increased propensity for neoplastic transformation.
Abstract: Age-related defects in stem cells can limit proper tissue maintenance and hence contribute to a shortened lifespan. Using highly purified hematopoietic stem cells from mice aged 2 to 21 mo, we demonstrate a deficit in function yet an increase in stem cell number with advancing age. Expression analysis of more than 14,000 genes identified 1,500 that were age-induced and 1,600 that were age-repressed. Genes associated with the stress response, inflammation, and protein aggregation dominated the up-regulated expression profile, while the down-regulated profile was marked by genes involved in the preservation of genomic integrity and chromatin remodeling. Many chromosomal regions showed coordinate loss of transcriptional regulation; an overall increase in transcriptional activity with age and inappropriate expression of genes normally regulated by epigenetic mechanisms was also observed. Hematopoietic stem cells from early-aging mice expressing a mutant p53 allele reveal that aging of stem cells can be uncoupled from aging at an organismal level. These studies show that hematopoietic stem cells are not protected from aging. Instead, loss of epigenetic regulation at the chromatin level may drive both functional attenuation of cells, as well as other manifestations of aging, including the increased propensity for neoplastic transformation.

Journal ArticleDOI
23 Feb 2007-Science
TL;DR: A bipartite methylation-demethylation program results in Xa-specific hypomethylation at gene promoters and hypermethylation at genes bodies, suggesting a relationship between global methylation and expression potentiality.
Abstract: Differential DNA methylation is important for the epigenetic regulation of gene expression. Allele-specific methylation of the inactive X chromosome has been demonstrated at promoter CpG islands, but the overall pattern of methylation on the active X(Xa) and inactive X (Xi) chromosomes is unknown. We performed allele-specific analysis of more than 1000 informative loci along the human X chromosome. The Xa displays more than two times as much allele-specific methylation as Xi. This methylation is concentrated at gene bodies, affecting multiple neighboring CpGs. Before X inactivation, all of these Xa gene body-methylated sites are biallelically methylated. Thus, a bipartite methylation-demethylation program results in Xa-specific hypomethylation at gene promoters and hypermethylation at gene bodies. These results suggest a relationship between global methylation and expression potentiality.

Journal ArticleDOI
TL;DR: In this paper, the authors identified regions containing H3K27me3 in the genome of the flowering plant Arabidopsis thaliana using a high-density whole-genome tiling microarray.
Abstract: Trimethylation of histone H3 lysine 27 (H3K27me3) plays critical roles in regulating animal development, and in several cases, H3K27me3 is also required for the proper expression of developmentally important genes in plants. However, the extent to which H3K27me3 regulates plant genes on a genome-wide scale remains unknown. In addition, it is not clear whether the establishment and spreading of H3K27me3 occur through the same mechanisms in plants and animals. We identified regions containing H3K27me3 in the genome of the flowering plant Arabidopsis thaliana using a high-density whole-genome tiling microarray. The results suggest that H3K27me3 is a major silencing mechanism in plants that regulates an unexpectedly large number of genes in Arabidopsis (~4,400), and that the maintenance of H3K27me3 is largely independent of other epigenetic pathways, such as DNA methylation or RNA interference. Unlike in animals, where H3K27m3 occupies large genomic regions, in Arabidopsis, we found that H3K27m3 domains were largely restricted to the transcribed regions of single genes. Furthermore, unlike in animals systems, H3K27m3 domains were not preferentially associated with low-nucleosome density regions. The results suggest that different mechanisms may underlie the establishment and spreading of H3K27me3 in plants and animals.

Journal ArticleDOI
TL;DR: The importance of hypermethylation events is already in evidence at the bedside of cancer patients in the form of cancer detection markers and chemotherapy predictors, and in the approval of epigenetic drugs for the treatment of hematological malignancies, as well as in the synergy of candidate gene approaches and large-scale epigenomic technologies, such as methyl-DIP.
Abstract: Epigenetic gene inactivation in transformed cells involves many 'belts of silencing'. One of the best-known lesions of the malignant cell is the transcriptional repression of tumor-suppressor genes by promoter CpG island hypermethylation. We are in the process of completing the molecular dissection of the entire epigenetic machinery involved in methylation-associated silencing, such as DNA methyltransferases, methyl-CpG binding domain proteins, histone deacetylases, histone methyltransferases, histone demethylases and Polycomb proteins. The first indications are also starting to emerge about how the combination of cellular selection and targeted pathways leads to abnormal DNA methylation. One thing is certain already, promoter CpG island hypermethylation of tumor-suppressor genes is a common hallmark of all human cancers. It affects all cellular pathways with a tumor-type specific profile, and in addition to classical tumor-suppressor and DNA repair genes, it includes genes involved in premature aging and microRNAs with growth inhibitory functions. The importance of hypermethylation events is already in evidence at the bedside of cancer patients in the form of cancer detection markers and chemotherapy predictors, and in the approval of epigenetic drugs for the treatment of hematological malignancies. In the very near future, the synergy of candidate gene approaches and large-scale epigenomic technologies, such as methyl-DIP, will yield the complete DNA hypermethylome of cancer cells.