scispace - formally typeset
Search or ask a question

Showing papers on "Exciton published in 2019"


Journal ArticleDOI
25 Feb 2019-Nature
TL;DR: In this paper, multiple interlayer exciton resonances with either positive or negative circularly polarized emission were observed in a molybdenum diselenide/tungsten diselinide (MoSe2/WSe2) heterobilayer with a small twist angle.
Abstract: Recent advances in the isolation and stacking of monolayers of van der Waals materials have provided approaches for the preparation of quantum materials in the ultimate two-dimensional limit1,2. In van der Waals heterostructures formed by stacking two monolayer semiconductors, lattice mismatch or rotational misalignment introduces an in-plane moire superlattice3. It is widely recognized that the moire superlattice can modulate the electronic band structure of the material and lead to transport properties such as unconventional superconductivity4 and insulating behaviour driven by correlations5–7; however, the influence of the moire superlattice on optical properties has not been investigated experimentally. Here we report the observation of multiple interlayer exciton resonances with either positive or negative circularly polarized emission in a molybdenum diselenide/tungsten diselenide (MoSe2/WSe2) heterobilayer with a small twist angle. We attribute these resonances to excitonic ground and excited states confined within the moire potential. This interpretation is supported by recombination dynamics and by the dependence of these interlayer exciton resonances on twist angle and temperature. These results suggest the feasibility of engineering artificial excitonic crystals using van der Waals heterostructures for nanophotonics and quantum information applications. Multiple interlayer exciton resonances in a MoSe2/WSe2 heterobilayer with a small twist angle are attributed to excitonic ground and excited states confined within the moire potential.

973 citations


Journal ArticleDOI
25 Feb 2019-Nature
TL;DR: In this paper, the authors reported the observation of multiple emergent peaks around the original WSe2 A exciton resonance in the absorption spectra, and they exhibit gate dependences that are distinct from that of the A excitons in WSe 2/WS 2 heterostructures with large twist angles.
Abstract: Moire superlattices enable the generation of new quantum phenomena in two-dimensional heterostructures, in which the interactions between the atomically thin layers qualitatively change the electronic band structure of the superlattice. For example, mini-Dirac points, tunable Mott insulator states and the Hofstadter butterfly pattern can emerge in different types of graphene/boron nitride moire superlattices, whereas correlated insulating states and superconductivity have been reported in twisted bilayer graphene moire superlattices1-12. In addition to their pronounced effects on single-particle states, moire superlattices have recently been predicted to host excited states such as moire exciton bands13-15. Here we report the observation of moire superlattice exciton states in tungsten diselenide/tungsten disulfide (WSe2/WS2) heterostructures in which the layers are closely aligned. These moire exciton states manifest as multiple emergent peaks around the original WSe2 A exciton resonance in the absorption spectra, and they exhibit gate dependences that are distinct from that of the A exciton in WSe2 monolayers and in WSe2/WS2 heterostructures with large twist angles. These phenomena can be described by a theoretical model in which the periodic moire potential is much stronger than the exciton kinetic energy and generates multiple flat exciton minibands. The moire exciton bands provide an attractive platform from which to explore and control excited states of matter, such as topological excitons and a correlated exciton Hubbard model, in transition-metal dichalcogenides.

796 citations


Journal ArticleDOI
06 Mar 2019-Nature
TL;DR: It is demonstrated that excitonic bands in MoSe2/WS2 heterostructures can hybridize, resulting in a resonant enhancement of moiré superlattice effects, which underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructure.
Abstract: Atomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation1,2. Consequently, an overarching periodicity emerges in the local atomic registry of the constituent crystal structures, which is known as a moire superlattice3. In graphene/hexagonal boron nitride structures4, the presence of a moire superlattice can lead to the observation of electronic minibands5–7, whereas in twisted graphene bilayers its effects are enhanced by interlayer resonant conditions, resulting in a superconductor–insulator transition at magic twist angles8. Here, using semiconducting heterostructures assembled from incommensurate molybdenum diselenide (MoSe2) and tungsten disulfide (WS2) monolayers, we demonstrate that excitonic bands can hybridize, resulting in a resonant enhancement of moire superlattice effects. MoSe2 and WS2 were chosen for the near-degeneracy of their conduction-band edges, in order to promote the hybridization of intra- and interlayer excitons. Hybridization manifests through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle, which occurs as hybridized excitons are formed by holes that reside in MoSe2 binding to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures in which the monolayer pairs are nearly aligned, resonant mixing of the electron states leads to pronounced effects of the geometrical moire pattern of the heterostructure on the dispersion and optical spectra of the hybridized excitons. Our findings underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures9. Excitonic bands in MoSe2/WS2 heterostructures can hybridize, resulting in a resonant enhancement of moire superlattice effects.

667 citations


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that in semiconducting heterostructures built of incommensurate MoSe2 and WS2 monolayers, excitonic bands can hybridise, resulting in the resonant enhancement of the moire superlattice effects.
Abstract: Atomically-thin layers of two-dimensional materials can be assembled in vertical stacks held together by relatively weak van der Waals forces, allowing for coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation. A profound consequence of using these degrees of freedom is the emergence of an overarching periodicity in the local atomic registry of the constituent crystal structures, known as a moire superlattice. Its presence in graphene/hexagonal boron nitride (hBN) structures led to the observation of electronic minibands, whereas its effect enhanced by interlayer resonant conditions in twisted graphene bilayers culminated in the observation of the superconductor-insulator transition at magic twist angles. Here, we demonstrate that, in semiconducting heterostructures built of incommensurate MoSe2 and WS2 monolayers, excitonic bands can hybridise, resulting in the resonant enhancement of the moire superlattice effects. MoSe2 and WS2 are specifically chosen for the near degeneracy of their conduction band edges to promote the hybridisation of intra- and interlayer excitons, which manifests itself through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle. This occurs as hybridised excitons (hX) are formed by holes residing in MoSe2 bound to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures with almost aligned pairs of monolayer crystals, resonant mixing of the electron states leads to pronounced effects of the heterostructure's geometrical moire pattern on the hX dispersion and optical spectrum. Our findings underpin novel strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures.

326 citations


Journal ArticleDOI
01 Oct 2019-Nature
TL;DR: In this article, the authors studied electroluminescence in two-dimensional atomic double layers of transition metal chalcogenides and showed that the interlayer tunnelling current depends only on the exciton density.
Abstract: A Bose–Einstein condensate is the ground state of a dilute gas of bosons, such as atoms cooled to temperatures close to absolute zero1. With much smaller mass, excitons (bound electron–hole pairs) are expected to condense at considerably higher temperatures2–7. Two-dimensional van der Waals semiconductors with very strong exciton binding are ideal systems for the study of high-temperature exciton condensation. Here we study electrically generated interlayer excitons in MoSe2–WSe2 atomic double layers with a density of up to 1012 excitons per square centimetre. The interlayer tunnelling current depends only on the exciton density, which is indicative of correlated electron–hole pair tunnelling8. Strong electroluminescence arises when a hole tunnels from WSe2 to recombine with an electron in MoSe2. We observe a critical threshold dependence of the electroluminescence intensity on exciton density, accompanied by super-Poissonian photon statistics near the threshold, and a large electroluminescence enhancement with a narrow peak at equal electron and hole densities. The phenomenon persists above 100 kelvin, which is consistent with the predicted critical condensation temperature9–12. Our study provides evidence for interlayer exciton condensation in two-dimensional atomic double layers and opens up opportunities for exploring condensate-based optoelectronics and exciton-mediated high-temperature superconductivity13. Condensation of interlayer excitons at temperatures above 100 kelvin is demonstrated in a van der Waals heterostructure consisting of two-dimensional atomic double layers of transition metal chalcogenides.

316 citations


Journal ArticleDOI
TL;DR: A systematic study of 18 different donor/acceptor blends to determine the effect that energetic offset has on both radiative and nonradiative recombination of the charge-transfer (CT) state finds that, for certain blends, low offsets result in hybridization between charge- transfer and lowest donor or acceptor exciton states, which leads to a strong suppression in the non Radiative voltage loss.
Abstract: A number of recent studies have shown that the nonradiative voltage losses in organic solar cells can be suppressed in systems with low energetic offsets between donor and acceptor molecular states...

260 citations


Journal ArticleDOI
TL;DR: Results reveal that the "hot exciton" path is a promising way to exploit high efficient, stable fluorescent emitters, especially for the pure-blue and deep-blue fluorescent organic light-emitting devices.
Abstract: Purely organic electroluminescent materials, such as thermally activated delayed fluorescent (TADF) and triplet-triplet annihilation (TTA) materials, basically harness triplet excitons from the lowest triplet excited state (T1 ) to realize high efficiency. Here, a fluorescent material that can convert triplet excitons into singlet excitons from the high-lying excited state (T2 ), referred to here as a "hot exciton" path, is reported. The energy levels of this compound are determined from the sensitization and nanosecond transient absorption spectroscopy measurements, i.e., small splitting energy between S1 and T2 and rather large T2 -T1 energy gap, which are expected to impede the internal conversion (IC) from T2 to T1 and facilitate the reverse intersystem crossing from the high-lying triplet state (hRISC). Through sensitizing the T2 state with ketones, the existence of the hRISC process with an ns-scale delayed lifetime is confirmed. Benefiting from this fast triplet-singlet conversion, the nondoped device based on this "hot exciton" material reaches a maximum external quantum efficiency exceeding 10%, with a small efficiency roll-off and CIE coordinates of (0.15, 0.13). These results reveal that the "hot exciton" path is a promising way to exploit high efficient, stable fluorescent emitters, especially for the pure-blue and deep-blue fluorescent organic light-emitting devices.

245 citations


Journal ArticleDOI
TL;DR: Local changes of the Coulomb interaction due to external dielectric environment fluctuations present a new type of disorder in monolayer transition-metal dichalcogenides.
Abstract: Understanding and controlling disorder is key to nanotechnology and materials science. Traditionally, disorder is attributed to local fluctuations of inherent material properties such as chemical and structural composition, doping or strain. Here, we present a fundamentally new source of disorder in nanoscale systems that is based entirely on the local changes of the Coulomb interaction due to fluctuations of the external dielectric environment. Using two-dimensional semiconductors as prototypes, we experimentally monitor dielectric disorder by probing the statistics and correlations of the exciton resonances, and theoretically analyse the influence of external screening and phonon scattering. Even moderate fluctuations of the dielectric environment are shown to induce large variations of the bandgap and exciton binding energies up to the 100 meV range, often making it a dominant source of inhomogeneities. As a consequence, dielectric disorder has strong implications for both the optical and transport properties of nanoscale materials and their heterostructures.

239 citations


Journal ArticleDOI
03 May 2019-Science
TL;DR: In this article, the authors show that the photoluminescence (PL) quantum yield of as-processed MoS2 and WS2 monolayers reaches near-unity when they are made intrinsic through electrostatic doping, without any chemical passivation.
Abstract: Defects in conventional semiconductors substantially lower the photoluminescence (PL) quantum yield (QY), a key metric of optoelectronic performance that directly dictates the maximum device efficiency. Two-dimensional transition-metal dichalcogenides (TMDCs), such as monolayer MoS2, often exhibit low PL QY for as-processed samples, which has typically been attributed to a large native defect density. We show that the PL QY of as-processed MoS2 and WS2 monolayers reaches near-unity when they are made intrinsic through electrostatic doping, without any chemical passivation. Surprisingly, neutral exciton recombination is entirely radiative even in the presence of a high native defect density. This finding enables TMDC monolayers for optoelectronic device applications as the stringent requirement of low defect density is eased.

215 citations


Journal ArticleDOI
01 Jul 2019-Nature
TL;DR: The thickness of the protective hafnium oxynitride layer at the surface of a silicon solar cell is reduced to just eight angstroms, using electric-field-effect passivation to enable the efficient energy transfer of the triplet excitons formed in the tetracene.
Abstract: Silicon dominates contemporary solar cell technologies1. But when absorbing photons, silicon (like other semiconductors) wastes energy in excess of its bandgap2. Reducing these thermalization losses and enabling better sensitivity to light is possible by sensitizing the silicon solar cell using singlet exciton fission, in which two excited states with triplet spin character (triplet excitons) are generated from a photoexcited state of higher energy with singlet spin character (a singlet exciton)3–5. Singlet exciton fission in the molecular semiconductor tetracene is known to generate triplet excitons that are energetically matched to the silicon bandgap6–8. When the triplet excitons are transferred to silicon they create additional electron–hole pairs, promising to increase cell efficiencies from the single-junction limit of 29 per cent to as high as 35 per cent9. Here we reduce the thickness of the protective hafnium oxynitride layer at the surface of a silicon solar cell to just eight angstroms, using electric-field-effect passivation to enable the efficient energy transfer of the triplet excitons formed in the tetracene. The maximum combined yield of the fission in tetracene and the energy transfer to silicon is around 133 per cent, establishing the potential of singlet exciton fission to increase the efficiencies of silicon solar cells and reduce the cost of the energy that they generate. A silicon and tetracene solar cell employing singlet fission uses an eight-angstrom-thick hafnium oxynitride interlayer to promote efficient triplet transfer, increasing the efficiency of the cell.

201 citations


Journal ArticleDOI
Richeng Lin1, Quanlin Guo1, Qun Zhu1, Yanming Zhu1, Wei Zheng1, Feng Huang1 
TL;DR: An all-inorganic lead-free CsCu2 I3 perovskite single crystal (SC) with stable and high photoluminescence quantum yield through strongly localized 1D exciton recombination is synthesized, which has great potential in energy-saving white lighting.
Abstract: Energy-saving white lighting from the efficient intrinsic emission of semiconductors is considered as a next-generation lighting source. Currently, white-light emission can be composited with a blue light-emitting diode and yellow phosphor. However, this solution has an inevitable light loss, which makes the improvement of the energy utilization efficiency more difficult. To deal with this problem, intrinsic white-light emission (IWE) in a single solid material gives a possibility. Here, an all-inorganic lead-free CsCu2 I3 perovskite single crystal (SC) with stable and high photoluminescence quantum yield (≈15.7%) IWE through strongly localized 1D exciton recombination is synthesized. In the CsCu2 I3 , the Cu-I octahedron, which provides most of electron states, is isolated by Cs atoms in two directions to form a 1D electronic structure, resulting a high radiation recombination rate of excitons. With this electronic structure design, the CsCu2 I3 SCs have great potential in energy-saving white lighting.

Journal ArticleDOI
TL;DR: In this article, the properties of two-dimensional group-VI transition metal dichalcogenide semiconductors, such as MoS2, WSe2 and others, are reviewed with an emphasis on exciton physics and devices.
Abstract: Two-dimensional group-VI transition metal dichalcogenide semiconductors, such as MoS2, WSe2 and others, exhibit strong light-matter coupling and possess direct band gaps in the infrared and visible spectral regimes, making them potentially interesting candidates for various applications in optics and optoelectronics. Here, we review their optical and optoelectronic properties with emphasis on exciton physics and devices. As excitons are tightly bound in these materials and dominate the optical response even at room-temperature, their properties are examined in depth in the first part of this article. We discuss the remarkably versatile excitonic landscape, including bright, dark, localized and interlayer excitons. In the second part, we provide an overview on the progress in optoelectronic device applications, such as electrically driven light emitters, photovoltaic solar cells, photodetectors and opto-valleytronic devices, again bearing in mind the prominent role of excitonic effects. We conclude with a brief discussion on challenges that remain to be addressed to exploit the full potential of transition metal dichalcogenide semiconductors in possible exciton-based applications.

Journal ArticleDOI
TL;DR: Magneto-optical spectroscopy shows that the dark exciton state in single formamidinium lead bromide perovskite nanocrystals is located below the bright exciton triplet, which explains the intense brightness of the nanoparticles.
Abstract: Lead halide perovskites have emerged as promising new semiconductor materials for high-efficiency photovoltaics, light-emitting applications and quantum optical technologies. Their luminescence properties are governed by the formation and radiative recombination of bound electron-hole pairs known as excitons, whose bright or dark character of the ground state remains unknown and debated. While symmetry analysis predicts a singlet non-emissive ground exciton topped with a bright exciton triplet, it has been predicted that the Rashba effect may reverse the bright and dark level ordering. Here, we provide the direct spectroscopic signature of the dark exciton emission in the low-temperature photoluminescence of single formamidinium lead bromide perovskite nanocrystals under magnetic fields. The dark singlet is located several millielectronvolts below the bright triplet, in fair agreement with an estimation of the long-range electron-hole exchange interaction. Nevertheless, these perovskites display an intense luminescence because of an extremely reduced bright-to-dark phonon-assisted relaxation.

Journal ArticleDOI
TL;DR: By dissolving 1,8-naphthalic anhydride in certain organic solid hosts, URTP with a lifetime of over 600 ms and overall quantum yield of over 20% is realized and is expected to help expand the varieties of purely organic URTP materials based on an advanced understanding of guest/host combinations.
Abstract: Purely organic room temperature phosphorescence (RTP) has attracted wide attention recently due to its various application potentials. However, ultralong RTP (URTP) with high efficiency is still rarely achieved. Herein, by dissolving 1,8-naphthalic anhydride in certain organic solid hosts, URTP with a lifetime of over 600 ms and overall quantum yield of over 20% is realized. Meanwhile, the URTP can also be achieved by mechanical excitation when the host is mechanoluminescent. Femtosecond transient absorption studies reveal that intersystem crossing of the host is accelerated substantially in the presence of a trace amount of 1,8-naphthalic anhydride. Accordingly, we propose that a cluster exciton spanning the host and guest forms as a transient state before the guest acts as an energy trap for the RTP state. The cluster exciton model proposed here is expected to help expand the varieties of purely organic URTP materials based on an advanced understanding of guest/host combinations. Purely organic ultralong room temperature phosphorescence (URTP) attracts attention but high efficiencies are rarely achieved. Here the authors use ultrafast spectroscopy to investigate a system of 1,8-naphthalic anhydride in organic hosts and reveal that a cluster exciton forms as a transient state before the guest acts as an energy trap for the URTP state.

Journal ArticleDOI
TL;DR: The measured exciton masses are heavier than theoretically predicted, especially for Mo-based monolayers, providing essential and quantitative parameters for the rational design of opto-electronic van der Waals heterostructures incorporating 2D semiconductors.
Abstract: In semiconductor physics, many essential optoelectronic material parameters can be experimentally revealed via optical spectroscopy in sufficiently large magnetic fields. For monolayer transition-metal dichalcogenide semiconductors, this field scale is substantial-tens of teslas or more-due to heavy carrier masses and huge exciton binding energies. Here we report absorption spectroscopy of monolayer [Formula: see text], and [Formula: see text] in very high magnetic fields to 91 T. We follow the diamagnetic shifts and valley Zeeman splittings of not only the exciton's [Formula: see text] ground state but also its excited [Formula: see text] Rydberg states. This provides a direct experimental measure of the effective (reduced) exciton masses and dielectric properties. Exciton binding energies, exciton radii, and free-particle bandgaps are also determined. The measured exciton masses are heavier than theoretically predicted, especially for Mo-based monolayers. These results provide essential and quantitative parameters for the rational design of opto-electronic van der Waals heterostructures incorporating 2D semiconductors.

Journal ArticleDOI
TL;DR: In this paper, the authors have synthesized Pt nanoparticles decorated with Pt2+-doped α-Fe2O3 nanoplates (Pt/Pt-Fe 2O3 NPs) by a one-step solvothermal route which exhibit the enhanced photoactivity and photostability.
Abstract: The photooxidation of water into O2 has been identified as the barrier of water-splitting, and light-driven water oxidation catalysts have been intensively explored to develop highly active water splitting materials. Despite the fascinating advantages for photocatalytic water oxidation, such as abundance in nature, inexpensiveness, low toxicity, thermo/photostability, and suitable electronic band structures, hematite α-Fe2O3 is a poor photocatalyst for water oxidation due to its short exciton lifetime and hole diffusion length, weak carrier mobility, and shallow sunlight penetration depth. In this work, we have synthesized Pt nanoparticles decorated Pt2+-doped α-Fe2O3 nanoplates (Pt/Pt-Fe2O3 NPs) by a one-step solvothermal route which exhibit the enhanced photoactivity and photostability for water oxidation. The introduction of the Pt into the α-Fe2O3 by the means of elemental doping and nanoparticle decoration accounts for the enhanced performance. The doping of Pt2+ into α-Fe2O3 improves the isolation e...

Journal ArticleDOI
TL;DR: In this article, a femtosecond pump-probe measurements of Coulomb correlations in WS2/WSe2/WS2 heterostructures reveal the interlayer exciton binding energy, determined from the 1s-2p resonance, as well as the dynamics of the conversion of intra-to inter-layer excitons.
Abstract: Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic1–3, Mott insulating4 or superconducting phases5,6. In transition metal dichalcogenide heterostructures7, electrons and holes residing in different monolayers can bind into spatially indirect excitons1,3,8–11 with a strong potential for optoelectronics11,12, valleytronics1,3,13, Bose condensation14, superfluidity14,15 and moire-induced nanodot lattices16. Yet these ideas require a microscopic understanding of the formation, dissociation and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers, where phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s–2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s–2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials. Femtosecond pump–probe measurements of Coulomb correlations in WS2/WSe2 heterostructures reveal the interlayer exciton binding energy, determined from the 1s–2p resonance, as well as the dynamics of the conversion of intra- to interlayer excitons.

Journal ArticleDOI
TL;DR: It is shown that the photoluminescence quantum yield of as-processed MoS2 and WS2 monolayers reaches near-unity when they are made intrinsic through electrostatic doping, without any chemical passivation.
Abstract: Defects in conventional semiconductors substantially lower the photoluminescence (PL) quantum yield (QY), a key metric of optoelectronic performance that directly dictates the maximum device efficiency. Two-dimensional (2D) transition metal dichalcogenides (TMDCs), such as monolayer MoS2, often exhibit low PL QY for as-processed samples, which has typically been attributed to a large native defect density. We show that the PL QY of as-processed MoS2 and WS2 monolayers reaches near-unity when they are made intrinsic by electrostatic doping, without any chemical passivation. Surprisingly, neutral exciton recombination is entirely radiative even in the presence of a high native defect density. This finding enables TMDC monolayers for optoelectronic device applications as the stringent requirement of low defect density is eased.

Journal ArticleDOI
TL;DR: Rapid exciton diffusion is revealed in films of a fused-ring electron acceptor that, when blended with a donor, already outperforms fullerene-based OPV cells and may even obviate the need for the bulk heterojunction morphology.
Abstract: Modest exciton diffusion lengths dictate the need for nanostructured bulk heterojunctions in organic photovoltaic (OPV) cells; however, this morphology compromises charge collection. Here, we reveal rapid exciton diffusion in films of a fused-ring electron acceptor that, when blended with a donor, already outperforms fullerene-based OPV cells. Temperature-dependent ultrafast exciton annihilation measurements are used to resolve a quasi-activationless exciton diffusion coefficient of at least 2 × 10–2 cm2/s, substantially exceeding typical organic semiconductors and consistent with the 20–50 nm domain sizes in optimized blends. Enhanced three-dimensional diffusion is shown to arise from molecular and packing factors; the rigid planar molecular structure is associated with low reorganization energy, good transition dipole moment alignment, high chromophore density, and low disorder, all enhancing long-range resonant energy transfer. Relieving exciton diffusion constraints has important implications for OPVs...

Journal ArticleDOI
05 Jun 2019-Nature
TL;DR: The findings show that the electron transport process accompanying exciton formation can be controlled by manipulating an electron spin inside a molecule, and it is anticipated that designing a device taking into account the exchange interaction could realize an OLED with a lower operating voltage.
Abstract: The formation of excitons in organic molecules by charge injection is an essential process in organic light-emitting diodes (OLEDs)1-7. According to a simple model based on spin statistics, the injected charges form spin-singlet (S1) excitons and spin-triplet (T1) excitons in a 1:3 ratio2-4. After the first report of a highly efficient OLED2 based on phosphorescence, which is produced by the decay of T1 excitons, more effective use of these excitons has been the primary strategy for increasing the energy efficiency of OLEDs. Another route to improving OLED energy efficiency is reduction of the operating voltage2-6. Because T1 excitons have lower energy than S1 excitons (owing to the exchange interaction), use of the energy difference could-in principle-enable exclusive production of T1 excitons at low OLED operating voltages. However, a way to achieve such selective and direct formation of these excitons has not yet been established. Here we report a single-molecule investigation of electroluminescence using a scanning tunnelling microscope8-20 and demonstrate a simple method of selective formation of T1 excitons that utilizes a charged molecule. A 3,4,9,10-perylenetetracarboxylicdianhydride (PTCDA) molecule21-25 adsorbed on a three-monolayer NaCl film atop Ag(111) shows both phosphorescence and fluorescence signals at high applied voltage. In contrast, only phosphorescence occurs at low applied voltage, indicating selective formation of T1 excitons without creating their S1 counterparts. The bias voltage dependence of the phosphorescence, combined with differential conductance measurements, reveals that spin-selective electron removal from a negatively charged PTCDA molecule is the dominant formation mechanism of T1 excitons in this system, which can be explained by considering the exchange interaction in the charged molecule. Our findings show that the electron transport process accompanying exciton formation can be controlled by manipulating an electron spin inside a molecule. We anticipate that designing a device taking into account the exchange interaction could realize an OLED with a lower operating voltage.

Journal ArticleDOI
TL;DR: In this article, the optical field and photogenerated exciton distribution in active layers were calculated according to their intrinsic properties, which could provide more intuitive evidence of JSC and FF improvement.
Abstract: The power conversion efficiency (PCE) of 13.00% was achieved in PBDB-T:Y16-based polymer solar cells (PSCs). On this basis, PCE of ternary PSCs was improved to 14.11% by incorporating 15 wt% MeIC1 in acceptors, resulting from simultaneously enhanced short circuit current (JSC) of 22.76 mA cm−2 and fill factor (FF) of 68.22%. The observed 14.11% PCE is among the highest values for all ternary PSCs. Y16 and MeIC1 preferred to form an alloyed acceptor due to good compatibility, which is beneficial to the formation of efficient electron transport channels in ternary active layers. Photon harvesting, exciton dissociation and charge transport could be synergistically optimized by incorporating 15 wt% MeIC1 in the acceptors. The optical field and photogenerated exciton distribution in active layers were calculated according to their intrinsic properties, which could provide more intuitive evidence of JSC and FF improvement. The photogenerated exciton distribution in active layers could also be optimized by employing a ternary strategy, which was beneficial for better balance charge collection efficiency and for achieving high FF of the ternary PSCs. This work further demonstrates that ternary strategies have great potential for improving the PSC performance by simultaneously optimizing photon harvesting and photogenerated exciton distribution in active layers.

Journal ArticleDOI
TL;DR: The understanding of the motion of e-h in core-shell QDs is essential for photovoltaic, LEDs, etc, carried out by the analysis of the overlap percentage using the Hartree-Fock method.
Abstract: Nanostructured semiconductors have the unique shape/size-dependent band gap tunability, which has various applications. The quantum confinement effect allows controlling the spatial distribution of the charge carriers in the core-shell quantum dots (QDs). Upon increasing shell thickness (e.g., from 0.25–3.25 nm) of core-shell QDs, the radial distribution function (RDF) of hole shifts towards the shell suggesting the confinement region switched from Type-I to Type-II excitons. As a result, there is a jump in the transition energy towards the higher side (blue shift). However, an intermediate state appeared as pseudo Type II excitons, in which holes are co-localized in the shell as well core whereas electrons are confined in core only, resulting in a dual absorption band (excitation energy), carried out by the analysis of the overlap percentage using the Hartree-Fock method. The findings are a close approximation to the experimental evidences. Thus, the understanding of the motion of e-h in core-shell QDs is essential for photovoltaic, LEDs, etc.

Journal ArticleDOI
TL;DR: In this article, the time and momentum-dependent elementary processes behind the formation, thermalization and photoemission of interlayer excitons for the exemplary MoSe2-WSe2 heterostructure were revealed.
Abstract: Atomically thin transition metal dichalcogenides can be stacked to van der Waals heterostructures enabling the design of new materials with tailored properties. The strong Coulomb interaction gives rise to interlayer excitons, where electrons and holes are spatially separated in different layers. In this work, we reveal the time- and momentum-dependent elementary processes behind the formation, thermalization and photoemission of interlayer excitons for the exemplary MoSe2–WSe2 heterostructure. We identify tunneling of holes from MoSe2 to WSe2 on a ps timescale as the crucial process for interlayer exciton formation. We also predict a drastic reduction of the formation time as a function of the interlayer energy offset suggesting that interlayer excitons can be externally tuned. Finally, we explain the experimental observation of a dominant photoluminescence from interlayer excitons despite the vanishingly small oscillator strength as a consequence of huge interlayer exciton occupations at low temperatures. Single layers of transition metal dichalcogenides are expected to be suitable for a number of applications and by stacking layers of different materials on top of each other (heterostructures) an even richer variety of properties can be explored. To this end the authors theoretically investigate cross material exciton states in a heterostructures of MoSe2 and WSe2 layers.

Journal ArticleDOI
TL;DR: The generation and transport over mesoscopic distances of valley-polarized excitons in a device based on a type-II TMDC heterostructure is shown and electrostatic traps are used to increase the exciton concentration by an order of magnitude, opening the route to achieving a coherent quantum state of valley, polarizedexcitons via Bose–Einstein condensation.
Abstract: Valleytronics is an appealing alternative to conventional charge-based electronics that aims at encoding data in the valley degree of freedom, that is, the information as to which extreme of the conduction or valence band carriers are occupying. The ability to create and control valley currents in solid-state devices could therefore enable new paradigms for information processing. Transition metal dichalcogenides (TMDCs) are a promising platform for valleytronics due to the presence of two inequivalent valleys with spin–valley locking1 and a direct bandgap2,3, which allows optical initialization and readout of the valley state4,5. Recent progress on the control of interlayer excitons in these materials6–8 could offer an effective way to realize optoelectronic devices based on the valley degree of freedom. Here, we show the generation and transport over mesoscopic distances of valley-polarized excitons in a device based on a type-II TMDC heterostructure. Engineering of the interlayer coupling results in enhanced diffusion of valley-polarized excitons, which can be controlled and switched electrically. Furthermore, using electrostatic traps, we can increase the exciton concentration by an order of magnitude, reaching densities in the order of 1012 cm−2, opening the route to achieving a coherent quantum state of valley-polarized excitons via Bose–Einstein condensation. Engineering the interlayer coupling in a van der Waals heterostructure enables electrical control over the transport and density of valley-polarized interlayer excitons.

Journal ArticleDOI
17 Jul 2019-Nature
TL;DR: Changes in the electronic states of two-dimensional semiconductor devices resulting from electrical gating can be monitored directly using micrometre-scale angle-resolved photoemission spectroscopy, providing a powerful way to study not only fundamental semiconductor physics, but also intriguing phenomena such as topological transitions5 and many-body spectral reconstructions under electrical control.
Abstract: The ability to directly monitor the states of electrons in modern field-effect devices-for example, imaging local changes in the electrical potential, Fermi level and band structure as a gate voltage is applied-could transform our understanding of the physics and function of a device. Here we show that micrometre-scale, angle-resolved photoemission spectroscopy1-3 (microARPES) applied to two-dimensional van der Waals heterostructures4 affords this ability. In two-terminal graphene devices, we observe a shift of the Fermi level across the Dirac point, with no detectable change in the dispersion, as a gate voltage is applied. In two-dimensional semiconductor devices, we see the conduction-band edge appear as electrons accumulate, thereby firmly establishing the energy and momentum of the edge. In the case of monolayer tungsten diselenide, we observe that the bandgap is renormalized downwards by several hundreds of millielectronvolts-approaching the exciton energy-as the electrostatic doping increases. Both optical spectroscopy and microARPES can be carried out on a single device, allowing definitive studies of the relationship between gate-controlled electronic and optical properties. The technique provides a powerful way to study not only fundamental semiconductor physics, but also intriguing phenomena such as topological transitions5 and many-body spectral reconstructions under electrical control.

Journal ArticleDOI
TL;DR: The findings gain access to the interlayer physics of the intrinsically incommensurate MoS{2}/WSe_{2} heterostructure, including moiré and valley pseudospin effects, and its integration with silicon photonics and optical fiber communication systems operating at wavelengths longer than 1150 nm.
Abstract: We report light emission around 1 eV (1240 nm) from heterostructures of MoS_{2} and WSe_{2} transition metal dichalcogenide monolayers. We identify its origin in an interlayer exciton (ILX) by its wide spectral tunability under an out-of-plane electric field. From the static dipole moment of the state, its temperature and twist-angle dependence, and comparison with electronic structure calculations, we assign this ILX to the fundamental interlayer transition between the K valleys in this system. Our findings gain access to the interlayer physics of the intrinsically incommensurate MoS_{2}/WSe_{2} heterostructure, including moire and valley pseudospin effects, and its integration with silicon photonics and optical fiber communication systems operating at wavelengths longer than 1150 nm.

Journal ArticleDOI
TL;DR: In this paper, the authors present experiments that show how excitons that are dynamically screened by itinerant electrons to form exciton-polarons, can be used as a spectroscopic tool to study interaction-induced incompressible states of electrons.
Abstract: Two dimensional materials and their heterostructures constitute a promising platform to study correlated electronic states as well as many body physics of excitons. Here, we present experiments that unite these hitherto separate efforts and show how excitons that are dynamically screened by itinerant electrons to form exciton-polarons, can be used as a spectroscopic tool to study interaction-induced incompressible states of electrons. The MoSe$_2$/hBN/MoSe$_2$ heterostructure that we study exhibits a long-period Moir\'e superlattice as evidenced by coherent-hole tunneling mediated avoided crossings between the intra-layer exciton with three inter-layer exciton resonances separated by $\sim$ 3meV. For electron densities corresponding to half-filling of the lowest Moir\'e subband, we observe strong layer-paramagnetism demonstrated by an abrupt transfer of all $\sim$ 1500 electrons from one MoSe$_2$ layer to the other upon application of a small perpendicular electric field. Remarkably, the electronic state at half-filling of each MoSe$_2$ layer is resilient towards charge redistribution by the applied electric field, demonstrating an incompressible Mott-like state of electrons. Our experiments demonstrate that optical spectroscopy provides a powerful tool for investigating strongly correlated electron physics in the bulk and pave the way for investigating Bose-Fermi mixtures of degenerate electrons and dipolar excitons.

Journal ArticleDOI
TL;DR: A direct ultrafast access to Coulomb correlations between monolayers is introduced, where phase-locked mid-infrared pulses allow to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s–2p resonance, explained by a fully quantum mechanical model.
Abstract: Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic, Mott insulating, or superconducting phases. In transition metal dichalcogenide heterostructures, electrons and holes residing in different monolayers can bind into spatially indirect excitons with a strong potential for optoelectronics, valleytronics, Bose condensation, superfluidity, and moire-induced nanodot lattices. Yet these ideas require a microscopic understanding of the formation, dissociation, and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers; phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s-2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s-2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.

Journal ArticleDOI
TL;DR: The size dependence of the exciton fine structure calculated for perovskite NCs shows that the bright-dark level inversion caused by the Rashba effect is suppressed by the enhanced electron-hole exchange interaction in small NCs.
Abstract: The bright emission observed in cesium lead halide perovskite nanocrystals (NCs) has recently been explained in terms of a bright exciton ground state [Becker et al. Nature 2018, 553, 189−193], a c...

Journal ArticleDOI
TL;DR: In this article, low-dimensional hybrid lead halides have been reported as efficient white light emitters, but unlike lead halide 3D perovskites, most of the reported lowdimensional materials with br...
Abstract: Low-dimensional hybrid lead halides have recently been reported as efficient white light emitters. However, unlike lead halide 3D perovskites, most of the reported low-dimensional materials with br...