scispace - formally typeset
Search or ask a question

Showing papers on "Fibrosis published in 2014"



Journal ArticleDOI
TL;DR: In cancer and during active tissue repair, pro-senescent therapies contribute to minimize the damage by limiting proliferation and fibrosis, respectively, and antisenescent therapies may help to eliminate accumulated senescent cells and to recover tissue function.
Abstract: Recent discoveries are redefining our view of cellular senescence as a trigger of tissue remodelling that acts during normal embryonic development and upon tissue damage. To achieve this, senescent cells arrest their own proliferation, recruit phagocytic immune cells and promote tissue renewal. This sequence of events - senescence, followed by clearance and then regeneration - may not be efficiently completed in aged tissues or in pathological contexts, thereby resulting in the accumulation of senescent cells. Increasing evidence indicates that both pro-senescent therapies and antisenescent therapies can be beneficial. In cancer and during active tissue repair, pro-senescent therapies contribute to minimize the damage by limiting proliferation and fibrosis, respectively. Conversely, antisenescent therapies may help to eliminate accumulated senescent cells and to recover tissue function.

1,830 citations


Journal ArticleDOI
TL;DR: Both experimental and clinical evidence suggests that cardiac fibrotic alterations may be reversible, and understanding the mechanisms responsible for initiation, progression, and resolution of cardiac fibrosis is crucial to design anti-fibrotic treatment strategies for patients with heart disease.
Abstract: Cardiac fibrosis is characterized by net accumulation of extracellular matrix proteins in the cardiac interstitium, and contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. This review discusses the cellular effectors and molecular pathways implicated in the pathogenesis of cardiac fibrosis. Although activated myofibroblasts are the main effector cells in the fibrotic heart, monocytes/macrophages, lymphocytes, mast cells, vascular cells and cardiomyocytes may also contribute to the fibrotic response by secreting key fibrogenic mediators. Inflammatory cytokines and chemokines, reactive oxygen species, mast cell-derived proteases, endothelin-1, the renin/angiotensin/aldosterone system, matricellular proteins, and growth factors (such as TGF-β and PDGF) are some of the best-studied mediators implicated in cardiac fibrosis. Both experimental and clinical evidence suggests that cardiac fibrotic alterations may be reversible. Understanding the mechanisms responsible for initiation, progression, and resolution of cardiac fibrosis is crucial to design anti-fibrotic treatment strategies for patients with heart disease.

1,092 citations


Journal ArticleDOI
05 Feb 2014-JAMA
TL;DR: Among patients with AF undergoing catheter ablation, atrial tissue fibrosis estimated by delayed enhancement MRI was independently associated with likelihood of recurrent arrhythmia and the clinical implications of this association warrant further investigation.
Abstract: Importance Left atrial fibrosis is prominent in patients with atrial fibrillation (AF). Extensive atrial tissue fibrosis identified by delayed enhancement magnetic resonance imaging (MRI) has been associated with poor outcomes of AF catheter ablation. Objective To characterize the feasibility of atrial tissue fibrosis estimation by delayed enhancement MRI and its association with subsequent AF ablation outcome. Design, Setting, and Participants Multicenter, prospective, observational cohort study of patients diagnosed with paroxysmal and persistent AF (undergoing their first catheter ablation) conducted between August 2010 and August 2011 at 15 centers in the United States, Europe, and Australia. Delayed enhancement MRI images were obtained up to 30 days before ablation. Main Outcomes and Measures Fibrosis quantification was performed at a core laboratory blinded to the participating center, ablation approach, and procedure outcome. Fibrosis blinded to the treating physicians was categorized as stage 1 ( Results Atrial tissue fibrosis estimation by delayed enhancement MRI was successfully quantified in 272 of 329 enrolled patients (57 patients [17%] were excluded due to poor MRI quality). There were 260 patients who were followed up after the blanking period (mean [SD] age of 59.1 [10.7] years, 31.5% female, 64.6% with paroxysmal AF). For recurrent arrhythmia, the unadjusted overall hazard ratio per 1% increase in left atrial fibrosis was 1.06 (95% CI, 1.03-1.08; P Conclusions and Relevance Among patients with AF undergoing catheter ablation, atrial tissue fibrosis estimated by delayed enhancement MRI was independently associated with likelihood of recurrent arrhythmia. The clinical implications of this association warrant further investigation.

1,048 citations


Journal ArticleDOI
TL;DR: This Review focuses on recent advances in liver fibrosis research as a paradigm for wound healing in solid organs and the role of the immune system in regulating and balancing this response.
Abstract: Fibrosis is a highly conserved and co-ordinated protective response to tissue injury. The interaction of multiple pathways, molecules and systems determines whether fibrosis is self-limiting and homeostatic, or whether it is uncontrolled and excessive. Immune cells have been identified as key players in this fibrotic cascade, with the capacity to exert either injury-inducing or repair-promoting effects. A multi-organ approach was recently suggested to identify the core and regulatory pathways in fibrosis, with the aim of integrating the wealth of information emerging from basic fibrosis research. In this Review, we focus on recent advances in liver fibrosis research as a paradigm for wound healing in solid organs and the role of the immune system in regulating and balancing this response.

985 citations


Journal ArticleDOI
TL;DR: The intimate dialogue between the (myo)fibroblasts and their microenvironment represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment.
Abstract: (Myo)fibroblasts are key players for maintaining skin homeostasis and for orchestrating physiological tissue repair. (Myo)fibroblasts are embedded in a sophisticated extracellular matrix (ECM) that they secrete, and a complex and interactive dialogue exists between (myo)fibroblasts and their microenvironment. In addition to the secretion of the ECM, (myo)fibroblasts, by secreting matrix metalloproteinases and tissue inhibitors of metalloproteinases, are able to remodel this ECM. (Myo)fibroblasts and their microenvironment form an evolving network during tissue repair, with reciprocal actions leading to cell differentiation, proliferation, quiescence, or apoptosis, and actions on growth factor bioavailability by binding, sequestration, and activation. In addition, the (myo)fibroblast phenotype is regulated by mechanical stresses to which they are subjected and thus by mechanical signaling. In pathological situations (excessive scarring or fibrosis), or during aging, this dialogue between the (myo)fibroblasts and their microenvironment may be altered or disrupted, leading to repair defects or to injuries with damaged and/or cosmetic skin alterations such as wrinkle development. The intimate dialogue between the (myo)fibroblasts and their microenvironment therefore represents a fascinating domain that must be better understood in order not only to characterize new therapeutic targets and drugs able to prevent or treat pathological developments but also to interfere with skin alterations observed during normal aging or premature aging induced by a deleterious environment.

744 citations


Journal ArticleDOI
TL;DR: Many common fibroblast-related features across various physiological and pathological protracted processes are recognized and a new appreciation has emerged for the role of non-cancerous fibro Blast interactions with tumors in cancer progression.
Abstract: Fibroblasts are the most common cell type of the connective tissues found throughout the body and the principal source of the extensive extracellular matrix (ECM) characteristic of these tissues. They are also the central mediators of the pathological fibrotic accumulation of ECM and the cellular proliferation and differentiation that occurs in response to prolonged tissue injury and chronic inflammation. The transformation of the fibroblast cell lineage involves classical developmental signaling programs and includes a surprisingly diverse range of precursor cell types—most notably, myofibroblasts that are the apex of the fibrotic phenotype. Myofibroblasts display exaggerated ECM production; constitutively secrete and are hypersensitive to chemical signals such as cytokines, chemokines, and growth factors; and are endowed with a contractile apparatus allowing them to manipulate the ECM fibers physically to close open wounds. In addition to ECM production, fibroblasts have multiple concomitant biological roles, such as in wound healing, inflammation, and angiogenesis, which are each interwoven with the process of fibrosis. We now recognize many common fibroblast-related features across various physiological and pathological protracted processes. Indeed, a new appreciation has emerged for the role of noncancerous fibroblast interactions with tumors in cancer progression. Although the predominant current clinical treatments of fibrosis involve nonspecific immunosuppressive and anti-proliferative drugs, a variety of potential therapies under investigation specifically target fibroblast biology.

734 citations


Journal ArticleDOI
TL;DR: Hepatic macrophages are central in the pathogenesis of chronic liver injury and have been proposed as potential targets in combatting fibrosis, and understanding the mechanisms that regulate hepaticmacrophage heterogeneity may help to develop novel macrophage subset-targeted therapies for Liver injury and fibrosis.

731 citations


Journal ArticleDOI
Jeremy S. Duffield1
TL;DR: New findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution are focused on.
Abstract: Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution.

520 citations


Journal ArticleDOI
TL;DR: These studies suggest that loss of cellular redox homeostasis promotes profibrotic myofibroblast phenotypes that result in persistent fibrosis associated with aging and suggest that restoration of Nox4-Nrf2 redox balance in my ofibroblasts may be a therapeutic strategy in age-associated fibrotic disorders.
Abstract: The incidence and prevalence of pathological fibrosis increase with advancing age, although mechanisms for this association are unclear. We assessed the capacity for repair of lung injury in young (2 months) and aged (18 months) mice. Whereas the severity of fibrosis was not different between these groups, aged mice demonstrated an impaired capacity for fibrosis resolution. Persistent fibrosis in lungs of aged mice was characterized by the accumulation of senescent and apoptosis-resistant myofibroblasts. These cellular phenotypes were sustained by alterations in cellular redox homeostasis resulting from elevated expression of the reactive oxygen species-generating enzyme Nox4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-4] and an impaired capacity to induce the Nrf2 (NFE2-related factor 2) antioxidant response. Lung tissues from human subjects with idiopathic pulmonary fibrosis (IPF), a progressive and fatal lung disease, also demonstrated this Nox4-Nrf2 imbalance. Nox4 mediated senescence and apoptosis resistance in IPF fibroblasts. Genetic and pharmacological targeting of Nox4 in aged mice with established fibrosis attenuated the senescent, antiapoptotic myofibroblast phenotype and led to a reversal of persistent fibrosis. These studies suggest that loss of cellular redox homeostasis promotes profibrotic myofibroblast phenotypes that result in persistent fibrosis associated with aging. Our studies suggest that restoration of Nox4-Nrf2 redox balance in myofibroblasts may be a therapeutic strategy in age-associated fibrotic disorders, potentially able to resolve persistent fibrosis or even reverse its progression.

510 citations


Journal ArticleDOI
TL;DR: Understanding the mechanisms by which inflammation drives renal fibrosis is necessary to facilitate the development of therapeutics to halt the progression of chronic kidney disease.
Abstract: Many types of kidney injury induce inflammation as a protective response. However, unresolved inflammation promotes progressive renal fibrosis, which can culminate in end-stage renal disease. Kidney inflammation involves cells of the immune system as well as activation of intrinsic renal cells, with the consequent production and release of profibrotic cytokines and growth factors that drive the fibrotic process. In glomerular diseases, the development of glomerular inflammation precedes interstitial fibrosis; although the mechanisms linking these events are poorly understood, an important role for tubular epithelial cells in mediating this link is gaining support. Data have implicated macrophages in promoting both glomerular and interstitial fibrosis, whereas limited evidence suggests that CD4(+) T cells and mast cells are involved in interstitial fibrosis. However, macrophages can also promote renal repair when the cause of renal injury can be resolved, highlighting their plasticity. Understanding the mechanisms by which inflammation drives renal fibrosis is necessary to facilitate the development of therapeutics to halt the progression of chronic kidney disease.

Journal ArticleDOI
TL;DR: Following pressure overload, fibroblasts were not derived from hematopoietic cells, EndoMT, or epicardial epithelial-to-mesenchymal transition; instead, pressure overload promoted comparable proliferation and activation of two resident fibroblast lineages, including a previously described epicardsial population and a population of endothelial origin.
Abstract: Activation and accumulation of cardiac fibroblasts, which result in excessive extracellular matrix deposition and consequent mechanical stiffness, myocyte uncoupling, and ischemia, are key contributors to heart failure progression. Recently, endothelial-to-mesenchymal transition (EndoMT) and the recruitment of circulating hematopoietic progenitors to the heart have been reported to generate substantial numbers of cardiac fibroblasts in response to pressure overload-induced injury; therefore, these processes are widely considered to be promising therapeutic targets. Here, using multiple independent murine Cre lines and a collagen1a1-GFP fusion reporter, which specifically labels fibroblasts, we found that following pressure overload, fibroblasts were not derived from hematopoietic cells, EndoMT, or epicardial epithelial-to-mesenchymal transition. Instead, pressure overload promoted comparable proliferation and activation of two resident fibroblast lineages, including a previously described epicardial population and a population of endothelial origin. Together, these data present a paradigm for the origins of cardiac fibroblasts during development and in fibrosis. Furthermore, these data indicate that therapeutic strategies for reducing pathogenic cardiac fibroblasts should shift from targeting presumptive EndoMT or infiltrating hematopoietically derived fibroblasts, toward common pathways upregulated in two endogenous fibroblast populations.

Journal ArticleDOI
TL;DR: It is confirmed that TM6SF2 minor allele carriage is associated with NAFLD and is causally related to a previously reported chromosome 19 GWAS signal that was ascribed to the gene NCAN.
Abstract: Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition, strongly associated with the metabolic syndrome, that can lead to progressive hepatic fibrosis, cirrhosis and hepatic failure. Subtle inter-patient genetic variation and environmental factors combine to determine variation in disease progression. A common non-synonymous polymorphism in TM6SF2 (rs58542926 c.449 C>T, p.Glu167Lys) was recently associated with increased hepatic triglyceride content, but whether this variant promotes clinically relevant hepatic fibrosis is unknown. Here we confirm that TM6SF2 minor allele carriage is associated with NAFLD and is causally related to a previously reported chromosome 19 GWAS signal that was ascribed to the gene NCAN. Furthermore, using two histologically characterized cohorts encompassing steatosis, steatohepatitis, fibrosis and cirrhosis (combined n=1,074), we demonstrate a new association, independent of potential confounding factors (age, BMI, type 2 diabetes mellitus and PNPLA3 rs738409 genotype), with advanced hepatic fibrosis/cirrhosis. These findings establish new and important clinical relevance to TM6SF2 in NAFLD.

Journal ArticleDOI
02 Jan 2014-Nature
TL;DR: It is demonstrated that in response to liver injury, differential recruitment of pro-regenerative CXCR7-Id1 versus pro-fibrotic FGFR1–CXCR4 angiocrine pathways in vascular niche balances regeneration and fibrosis.
Abstract: Chemical or traumatic damage to the liver is frequently associated with aberrant healing (fibrosis) that overrides liver regeneration. The mechanism by which hepatic niche cells differentially modulate regeneration and fibrosis during liver repair remains to be defined. Hepatic vascular niche predominantly represented by liver sinusoidal endothelial cells deploys paracrine trophogens, known as angiocrine factors, to stimulate regeneration. Nevertheless, it is not known how pro-regenerative angiocrine signals from liver sinusoidal endothelial cells is subverted to promote fibrosis. Here, by combining an inducible endothelial-cell-specific mouse gene deletion strategy and complementary models of acute and chronic liver injury, we show that divergent angiocrine signals from liver sinusoidal endothelial cells stimulate regeneration after immediate injury and provoke fibrosis after chronic insult. The pro-fibrotic transition of vascular niche results from differential expression of stromal-derived factor-1 receptors, CXCR7 and CXCR4 (refs 18, 19, 20, 21), in liver sinusoidal endothelial cells. After acute injury, CXCR7 upregulation in liver sinusoidal endothelial cells acts with CXCR4 to induce transcription factor Id1, deploying pro-regenerative angiocrine factors and triggering regeneration. Inducible deletion of Cxcr7 in sinusoidal endothelial cells (Cxcr7(iΔEC/iΔEC)) from the adult mouse liver impaired liver regeneration by diminishing Id1-mediated production of angiocrine factors. By contrast, after chronic injury inflicted by iterative hepatotoxin (carbon tetrachloride) injection and bile duct ligation, constitutive FGFR1 signalling in liver sinusoidal endothelial cells counterbalanced CXCR7-dependent pro-regenerative response and augmented CXCR4 expression. This predominance of CXCR4 over CXCR7 expression shifted angiocrine response of liver sinusoidal endothelial cells, stimulating proliferation of desmin(+) hepatic stellate-like cells and enforcing a pro-fibrotic vascular niche. Endothelial-cell-specific ablation of either Fgfr1 (Fgfr1(iΔEC/iΔEC)) or Cxcr4 (Cxcr4(iΔEC/iΔEC)) in mice restored the pro-regenerative pathway and prevented FGFR1-mediated maladaptive subversion of angiocrine factors. Similarly, selective CXCR7 activation in liver sinusoidal endothelial cells abrogated fibrogenesis. Thus, we demonstrate that in response to liver injury, differential recruitment of pro-regenerative CXCR7-Id1 versus pro-fibrotic FGFR1-CXCR4 angiocrine pathways in vascular niche balances regeneration and fibrosis. These results provide a therapeutic roadmap to achieve hepatic regeneration without provoking fibrosis.

Journal ArticleDOI
TL;DR: Nintedanib inhibited receptor tyrosine kinase activation and the proliferation and transformation of human lung fibroblasts and showed antifibrotic and anti-inflammatory activity in two animal models of pulmonary fibrosis.
Abstract: The tyrosine kinase inhibitor nintedanib (BIBF 1120) is in clinical development for the treatment of idiopathic pulmonary fibrosis. To explore its mode of action, nintedanib was tested in human lung fibroblasts and mouse models of lung fibrosis. Human lung fibroblasts expressing platelet-derived growth factor (PDGF) receptor-α and -β were stimulated with platelet-derived growth factor BB (homodimer) (PDGF-BB). Receptor activation was assessed by autophosphorylation and cell proliferation by bromodeoxyuridine incorporation. Transforming growth factor β (TGFβ)-induced fibroblast to myofibroblast transformation was determined by α-smooth muscle actin (αSMA) mRNA analysis. Lung fibrosis was induced in mice by intratracheal bleomycin or silica particle administration. Nintedanib was administered every day by gavage at 30, 60, or 100 mg/kg. Preventive nintedanib treatment regimen started on the day that bleomycin was administered. Therapeutic treatment regimen started at various times after the induction of lung fibrosis. Bleomycin caused increased macrophages and lymphocytes in the bronchoalveolar lavage (BAL) and elevated interleukin-1β (IL-1β), tissue inhibitor of metalloproteinase-1 (TIMP-1), and collagen in lung tissue. Histology revealed chronic inflammation and fibrosis. Silica-induced lung pathology additionally showed elevated BAL neutrophils, keratinocyte chemoattractant (KC) levels, and granuloma formation. Nintedanib inhibited PDGF receptor activation, fibroblast proliferation, and fibroblast to myofibroblast transformation. Nintedanib significantly reduced BAL lymphocytes and neutrophils but not macrophages. Furthermore, interleukin-1β, KC, TIMP-1, and lung collagen were significantly reduced. Histologic analysis showed significantly diminished lung inflammation, granuloma formation, and fibrosis. The therapeutic effect was dependent on treatment start and duration. Nintedanib inhibited receptor tyrosine kinase activation and the proliferation and transformation of human lung fibroblasts and showed antifibrotic and anti-inflammatory activity in two animal models of pulmonary fibrosis. These results suggest that nintedanib may impact the progressive course of fibrotic lung diseases such as idiopathic pulmonary fibrosis.

Journal ArticleDOI
TL;DR: Experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover, and data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.
Abstract: Fibrosis – a debilitating condition that can occur in most organs – is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis – that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process – experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.

Journal ArticleDOI
TL;DR: Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver Fibrosis and Cirrhosis will facilitate thedevelopment of more effective therapeutic approaches for these conditions.
Abstract: Liver cirrhosis is the final pathological result of various chronic liver diseases, and fibrosis is the precursor of cirrhosis. Many types of cells, cytokines and miRNAs are involved in the initiation and progression of liver fibrosis and cirrhosis. Activation of hepatic stellate cells (HSCs) is a pivotal event in fibrosis. Defenestration and capillarization of liver sinusoidal endothelial cells are major contributing factors to hepatic dysfunction in liver cirrhosis. Activated Kupffer cells destroy hepatocytes and stimulate the activation of HSCs. Repeated cycles of apoptosis and regeneration of hepatocytes contribute to pathogenesis of cirrhosis. At the molecular level, many cytokines are involved in mediation of signaling pathways that regulate activation of HSCs and fibrogenesis. Recently, miRNAs as a post-transcriptional regulator have been found to play a key role in fibrosis and cirrhosis. Robust animal models of liver fibrosis and cirrhosis, as well as the recently identified critical cellular and molecular factors involved in the development of liver fibrosis and cirrhosis will facilitate the development of more effective therapeutic approaches for these conditions.

Journal ArticleDOI
TL;DR: MRE is accurate in predictingAdvanced fibrosis and may be utilized for noninvasive diagnosis of advanced fibrosis in patients with NAFLD.

Journal ArticleDOI
TL;DR: A crucial role for the NLRP3 inflammasome gain of function leads to early and severe onset of diet-induced steatohepatitis in mice is uncovered and may lead to novel therapeutic strategies aimed at halting the progression of hepatic steatosis to the more severe forms of this disease.
Abstract: NLR inflammasomes, caspase 1 activation platforms critical for processing key pro-inflammatory cytokines, have been implicated in the development of nonalcoholic fatty liver disease (NAFLD). As the direct role of the NLRP3 inflammasome remains unclear, we tested effects of persistent NLRP3 activation as a contributor to NAFLD development and, in particular, as a modulator of progression from benign hepatic steatosis to steatohepatitis during diet-induced NAFLD. Gain of function tamoxifen-inducible Nlrp3 knock-in mice allowing for in vivo temporal control of NLRP3 activation and loss of function Nlrp3 knockout mice were placed on short-term choline-deficient amino acid-defined (CDAA) diet, to induce isolated hepatic steatosis or long-term CDAA exposure, to induce severe steatohepatitis and fibrosis, respectively. Expression of NLRP3 associated proteins was assessed in liver biopsies of a well-characterized group of patients with the full spectrum of NAFLD. Nlrp3 −/− mice were protected from long-term feeding CDAA-induced hepatomegaly, liver injury, and infiltration of activated macrophages. More importantly, Nlrp3 −/− mice showed marked protection from CDAA-induced liver fibrosis. After 4 weeks on CDAA diet, wild-type (WT) animals showed isolated hepatic steatosis while Nlrp3 knock-in mice showed severe liver inflammation, with increased infiltration of activated macrophages and early signs of liver fibrosis. In the liver samples of patients with NAFLD, inflammasome components were significantly increased in those patients with nonalcoholic steatohepatitis (NASH) when compared to those with non-NASH NAFLD with mRNA levels of pro-IL1 beta correlated to levels of COL1A1. Our study uncovers a crucial role for the NLRP3 inflammasome in the development of NAFLD. These findings may lead to novel therapeutic strategies aimed at halting the progression of hepatic steatosis to the more severe forms of this disease.

Journal ArticleDOI
TL;DR: The presence of portal inflammation in NAFLD was strongly correlated with disease severity (fibrosis stage) and the DR, and the composition of the portal inflammatory infiltrate and its relationship to the ductular reaction (DR), a second portal phenomenon implicated in fibrogenesis.

Journal ArticleDOI
TL;DR: The aim is to integrate the histopathologic process of fibrosis with the neurohormonal, cytochemical, and molecular changes that lead to ventricular remodeling and its physiologic consequences in patients.
Abstract: The extracellular matrix (ECM) is a living network of proteins that maintains the structural integrity of the myocardium and allows the transmission of electrical and mechanical forces between the myocytes for systole and diastole. During ventricular remodeling, as a result of iterations in the hemodynamic workload, collagen, the main component of the ECM, increases and occupies the areas between the myocytes and the vessels. The resultant fibrosis (reparative fibrosis) is initially a compensatory mechanism and may progress adversely influencing tissue stiffness and ventricular function. Replacement fibrosis appears at sites of previous cardiomyocyte necrosis to preserve the structural integrity of the myocardium, but with the subsequent formation of scar tissue and widespread distribution, it has adverse functional consequences. Continued accumulation of collagen impairs diastolic function and compromises systolic mechanics. Nevertheless, the development of fibrosis is a dynamic process wherein myofibroblasts, the principal cellular elements of fibrosis, are not only metabolically active and capable of the production and upregulation of cytokines but also have contractile properties. During the process of reverse remodeling with left ventricular assist device unloading, cellular, structural, and functional improvements are observed in terminal heart failure patients. With the advent of anti-fibrotic pharmacologic therapies, cellular therapy, and ventricular support devices, fibrosis has become an important therapeutic target in heart failure patients. Herein, we review the current concepts of fibrosis as a main component of ventricular remodeling in heart failure patients. Our aim is to integrate the histopathologic process of fibrosis with the neurohormonal, cytochemical, and molecular changes that lead to ventricular remodeling and its physiologic consequences in patients. The concept of fibrosis as living scar allows us to envision targeting this scar as a means of improving ventricular function in heart failure patients.

Journal ArticleDOI
Albert J. Czaja1
TL;DR: Anti-oxidants and angiotensin inhibitors have had anti-fibrotic actions in preliminary human studies, and they may emerge as supplemental therapies for chronic liver disease.
Abstract: Chronic liver inflammation drives hepatic fibrosis, and current immunosuppressive, anti-inflammatory, and anti-viral therapies can weaken this driver. Hepatic fibrosis is reversed, stabilized, or prevented in 57%-79% of patients by conventional treatment regimens, mainly by their anti-inflammatory actions. Responses, however, are commonly incomplete and inconsistently achieved. The fibrotic mechanisms associated with liver inflammation have been clarified, and anti-fibrotic agents promise to improve outcomes as adjunctive therapies. Hepatitis C virus and immune-mediated responses can activate hepatic stellate cells by increasing oxidative stress within hepatocytes. Angiotensin can be synthesized by activated hepatic stellate cells and promote the production of reactive oxygen species. Anti-oxidants (N-acetylcysteine, S-adenosyl-L-methionine, and vitamin E) and angiotensin inhibitors (losartin) have had anti-fibrotic actions in preliminary human studies, and they may emerge as supplemental therapies. Anti-fibrotic agents presage a new era of supplemental treatment for chronic liver disease.

Journal ArticleDOI
16 Jan 2014-Immunity
TL;DR: Fibrosis is observed in mice lacking interferon-γ (IFN-γ), STAT1, or RAG-1 and IL-6 causes compromised tissue repair by shifting acute inflammation into a more chronic profibrotic state through induction of Th1 cell responses as a consequence of recurrent inflammation.

Journal ArticleDOI
TL;DR: The pathogenesis of liver fibrosis associated with alcoholic liver disease, non-alcoholic fatty liver disease and viral hepatitis are discussed and the characterization of different pathways associated with different etiologies aid the development of disease-specific therapies.
Abstract: There have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying liver fibrogenesis. Recent data indicate that the termination of fibrogenic processes and the restoration of deficient fibrolytic pathways may allow the reversal of advanced fibrosis and even cirrhosis. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in liver fibrosis. Activation of hepatic stellate cells (HSCs) remains a central event in fibrosis, complemented by other sources of matrix-producing cells, including portal fibroblasts, fibrocytes and bone marrow-derived myofibroblasts. These cells converge in a complex interaction with neighboring cells to provoke scarring in response to persistent injury. Defining the interaction of different cell types, revealing the effects of cytokines on these cells and characterizing the regulatory mechanisms that control gene expression in activated HSCs will enable the discovery of new therapeutic targets. Moreover, the characterization of different pathways associated with different etiologies aid in the development of disease-specific therapies. This article outlines recent advances regarding the cellular and molecular mechanisms involved in liver fibrosis that may be translated into future therapies. The pathogenesis of liver fibrosis associated with alcoholic liver disease, non-alcoholic fatty liver disease and viral hepatitis are also discussed to emphasize the various mechanisms involved in liver fibrosis.

Journal ArticleDOI
TL;DR: The diagnosis of IgG4-RD unifies many eponymous fibroinflammatory conditions that had previously been thought to be confined to single organs and is now being recognized with increasing frequency.
Abstract: Immunoglobulin G4 (IgG4)-related disease (IgG4-RD) is an immune-mediated condition that can affect almost any organ and is now being recognized with increasing frequency. IgG4-RD is characterized by a lymphoplasmacytic infiltrate composed of IgG4(+) plasma cells, storiform fibrosis, obliterative phlebitis, and mild to moderate eosinophilia. The diagnosis of IgG4-RD unifies many eponymous fibroinflammatory conditions that had previously been thought to be confined to single organs. IgG4-RD lesions are infiltrated by T helper cells, which likely cause progressive fibrosis and organ damage. IgG4 antibodies are generally regarded as noninflammatory. Although autoreactive IgG4 antibodies are observed in IgG4-RD, there is no evidence that they are directly pathogenic. Rituximab-induced B cell depletion in IgG4-RD leads to rapid clinical and histological improvement accompanied by swift declines in serum IgG4 concentrations. Although IgG autoantibodies against various exocrine gland antigens have been described in IgG4-RD, whether they are members of the IgG4 subclass is unknown. The contribution of autoantibodies to IgG4-RD remains unclear.

Journal ArticleDOI
TL;DR: PNPLA3 is associated with an increased risk of advanced fibrosis among patients with a variety of liver diseases and is an independent risk factor for HCC among patientswith nonalcoholic steatohepatitis or alcohol-related cirrhosis.

Journal ArticleDOI
TL;DR: It is demonstrated that pirfenidone modulates HLF proliferation and TGF-β-mediated differentiation into myofibroblasts by attenuating key TGF -β-induced signaling pathways.

Journal ArticleDOI
TL;DR: IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrochemical cytokine production in an ST2- and macrophage-dependent manner.
Abstract: Background The initiation and regulation of pulmonary fibrosis are not well understood. IL-33, an important cytokine for respiratory diseases, is overexpressed in the lungs of patients with idiopathic pulmonary fibrosis. Objectives We aimed to determine the effects and mechanism of IL-33 on the development and severity of pulmonary fibrosis in murine bleomycin-induced fibrosis. Methods Lung fibrosis was induced by bleomycin in wild-type or Il33r ( St2 ) −/− C57BL/6 mice treated with the recombinant mature form of IL-33 or anti–IL-33 antibody or transferred with type 2 innate lymphoid cells (ILC2s). The development and severity of fibrosis was evaluated based on lung histology, collagen levels, and lavage cytology. Cytokine and chemokine levels were quantified by using quantitative PCR, ELISA, and cytometry. Results IL-33 is constitutively expressed in lung epithelial cells but is induced in macrophages by bleomycin. Bleomycin enhanced the production of the mature but reduced full-length form of IL-33 in lung tissue. ST2 deficiency, anti–IL-33 antibody treatment, or alveolar macrophage depletion attenuated and exogenous IL-33 or adoptive transfer of ILC2s enhanced bleomycin-induced lung inflammation and fibrosis. These pathologic changes were accompanied, respectively, by reduced or increased IL-33, IL-13, TGF-β1, and inflammatory chemokine production in the lung. Furthermore, IL-33 polarized M2 macrophages to produce IL-13 and TGF-β1 and induced the expansion of ILC2s to produce IL-13 in vitro and in vivo . Conclusions IL-33 is a novel profibrogenic cytokine that signals through ST2 to promote the initiation and progression of pulmonary fibrosis by recruiting and directing inflammatory cell function and enhancing profibrogenic cytokine production in an ST2- and macrophage-dependent manner.

Journal ArticleDOI
TL;DR: The involvement of endothelium and pericyte activation, aberrant immune responses, endoplasmic reticulum stress and chronic tissue injury in the initiation of fibrosis in SSc are discussed and fibroblast activation and myofibroblast differentiation that occurs in response to these initiating processes and is responsible for excessive accumulation of extracellular matrix are discussed.
Abstract: Fibrosis is characterized by excessive accumulation of connective tissue components in organs or tissues and is a critical, and potentially lethal, component of systemic sclerosis (SSc). Here, the authors describe the pathological role of fibrosis in the development of SSc, outlining the crucial triggers of fibrosis (including endothelium, aberrant immune responses and endoplasmic reticulum stress, among others).

Journal ArticleDOI
TL;DR: The data suggest that cardiac remodeling associated with HCM determines a significant release of miRNAs into the bloodstream: the circulating levels of both cardiac- and non-cardiac-specific miRNas are significantly increased in the plasma of HCM patients.