scispace - formally typeset
Search or ask a question

Showing papers on "Magnetic field published in 2018"


Journal ArticleDOI
TL;DR: Electrical control of magnetism in a bilayer of CrI3 enables the realization of an electrically driven magnetic phase transition and the observation of the magneto-optical Kerr effect in 2D magnets.
Abstract: Controlling magnetism via electric fields addresses fundamental questions of magnetic phenomena and phase transitions1–3, and enables the development of electrically coupled spintronic devices, such as voltage-controlled magnetic memories with low operation energy4–6. Previous studies on dilute magnetic semiconductors such as (Ga,Mn)As and (In,Mn)Sb have demonstrated large modulations of the Curie temperatures and coercive fields by altering the magnetic anisotropy and exchange interaction2,4,7–9. Owing to their unique magnetic properties10–14, the recently reported two-dimensional magnets provide a new system for studying these features15–19. For instance, a bilayer of chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition15,16. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states that exhibit spin-layer locking, leading to a linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results allow for the exploration of new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.

1,000 citations


Journal ArticleDOI
TL;DR: In this article, the magnetic properties of both monolayer and bilayer CrI3-graphene vertical heterostructures were demonstrated by electrostatic doping using CVD.
Abstract: The atomic thickness of two-dimensional materials provides a unique opportunity to control their electrical1 and optical2 properties as well as to drive the electronic phase transitions3 by electrostatic doping. The discovery of two-dimensional magnetic materials4–10 has opened up the prospect of the electrical control of magnetism and the realization of new functional devices11. A recent experiment based on the linear magneto-electric effect has demonstrated control of the magnetic order in bilayer CrI3 by electric fields12. However, this approach is limited to non-centrosymmetric materials11,13–16 magnetically biased near the antiferromagnet–ferromagnet transition. Here, we demonstrate control of the magnetic properties of both monolayer and bilayer CrI3 by electrostatic doping using CrI3–graphene vertical heterostructures. In monolayer CrI3, doping significantly modifies the saturation magnetization, coercive force and Curie temperature, showing strengthened/weakened magnetic order with hole/electron doping. Remarkably, in bilayer CrI3, the electron doping above ~2.5 × 1013 cm−2 induces a transition from an antiferromagnetic to a ferromagnetic ground state in the absence of a magnetic field. The result reveals a strongly doping-dependent interlayer exchange coupling, which enables robust switching of magnetization in bilayer CrI3 by small gate voltages. Electrostatic doping in vertical van der Waals CrI3–graphene heterostructures provides means to control the magnetic properties of monolayer and bilayer CrI3.

838 citations


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate voltage-controlled switching between antiferromagnetic and ferromagnetic states in bilayer chromium triiodide (CrI3) bilayers.
Abstract: The challenge of controlling magnetism using electric fields raises fundamental questions and addresses technological needs such as low-dissipation magnetic memory. The recently reported two-dimensional (2D) magnets provide a new system for studying this problem owing to their unique magnetic properties. For instance, bilayer chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states which exhibit spin-layer locking, leading to a remarkable linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results pave the way for exploring new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.

576 citations


Journal ArticleDOI
TL;DR: Large tunneling magnetoresistance is reported through exfoliated CrI3 crystals and its evolution is attributed to the multiple transitions to different magnetic states, demonstrating the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.
Abstract: Magnetic layered van der Waals crystals are an emerging class of materials giving access to new physical phenomena, as illustrated by the recent observation of 2D ferromagnetism in Cr2Ge2Te6 and CrI3. Of particular interest in semiconductors is the interplay between magnetism and transport, which has remained unexplored. Here we report magneto-transport measurements on exfoliated CrI3 crystals. We find that tunneling conduction in the direction perpendicular to the crystalline planes exhibits a magnetoresistance as large as 10,000%. The evolution of the magnetoresistance with magnetic field and temperature reveals that the phenomenon originates from multiple transitions to different magnetic states, whose possible microscopic nature is discussed on the basis of all existing experimental observations. This observed dependence of the conductance of a tunnel barrier on its magnetic state is a phenomenon that demonstrates the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.

527 citations


Journal ArticleDOI
15 Jun 2018-Science
TL;DR: Tuning through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field is reported, electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition.
Abstract: Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field. We electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition. The metamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively. We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.

514 citations


Journal ArticleDOI
TL;DR: A variety of directional electronic transport phenomena can occur in materials with broken inversion-symmetry, including the photocurrent of topological origin and the unidirectional magnetoresistance in polar/chiral semiconductors.
Abstract: Directional transport and propagation of quantum particle and current, such as electron, photon, spin, and phonon, are known to occur in the materials system with broken inversion symmetry, as exemplified by the diode in semiconductor p-n junction and the natural optical activity in chiral materials. Such a nonreciprocal response in the quantum materials of noncentrosymmetry occurs ubiquitously when the time-reversal symmetry is further broken by applying a magnetic field or with spontaneous magnetization, such as the magnetochiral effect and the nonreciprocal magnon transport or spin current in chiral magnets. In the nonlinear regime responding to the square of current and electric field, even a more variety of nonreciprocal phenomena can show up, including the photocurrent of topological origin and the unidirectional magnetoresistance in polar/chiral semiconductors. Microscopically, these nonreciprocal responses in the quantum materials are frequently encoded by the quantum Berry phase, the toroidal moment, and the magnetoelectric monopole, thus cultivating the fertile ground of the functional topological materials. Here, we review the basic mechanisms and emergent phenomena and functions of the nonreciprocal responses in the noncentrosymmetric quantum materials.

414 citations


Journal ArticleDOI
TL;DR: In this article, a multiple-spin-filter magnetic tunnel junctions (sf-MTJ) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts is presented.
Abstract: Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here we report novel multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. These devices also show multiple resistance states as a function of magnetic field, suggesting the potential for multi-bit functionalities using an individual vdW sf-MTJ. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI3. Our work reveals the possibility to push magnetic information storage to the atomically thin limit, and highlights CrI3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.

408 citations


Journal ArticleDOI
12 Sep 2018-Nature
TL;DR: Tunable spin transport over long distances is demonstrated through the antiferromagnetic insulator haematite, paving the way to electrically tunable, ultrafast, low-power, antiferromeagnetic-insulator-based spin-logic devices6,13 that operate without magnetic fields at room temperature.
Abstract: Spintronics relies on the transport of spins, the intrinsic angular momentum of electrons, as an alternative to the transport of electron charge as in conventional electronics. The long-term goal of spintronics research is to develop spin-based, low-dissipation computing-technology devices. Recently, long-distance transport of a spin current was demonstrated across ferromagnetic insulators1. However, antiferromagnetically ordered materials, the most common class of magnetic materials, have several crucial advantages over ferromagnetic systems for spintronics applications2: antiferromagnets have no net magnetic moment, making them stable and impervious to external fields, and can be operated at terahertz-scale frequencies3. Although the properties of antiferromagnets are desirable for spin transport4–7, indirect observations of such transport indicate that spin transmission through antiferromagnets is limited to only a few nanometres8–10. Here we demonstrate long-distance propagation of spin currents through a single crystal of the antiferromagnetic insulator haematite (α-Fe2O3)11, the most common antiferromagnetic iron oxide, by exploiting the spin Hall effect for spin injection. We control the flow of spin current across a haematite–platinum interface—at which spins accumulate, generating the spin current—by tuning the antiferromagnetic resonance frequency using an external magnetic field12. We find that this simple antiferromagnetic insulator conveys spin information parallel to the antiferromagnetic Neel order over distances of more than tens of micrometres. This mechanism transports spins as efficiently as the most promising complex ferromagnets1. Our results pave the way to electrically tunable, ultrafast, low-power, antiferromagnetic-insulator-based spin-logic devices6,13 that operate without magnetic fields at room temperature.

376 citations


Journal ArticleDOI
08 Oct 2018-Nature
TL;DR: In this paper, an exciton-polariton topological insulator was shown to be possible without a magnetic field in an array of semiconductor microcavities, where an applied magnetic field leads to the unidirectional flow of a polariton wavepacket around the edge of the array.
Abstract: Topological insulators—materials that are insulating in the bulk but allow electrons to flow on their surface—are striking examples of materials in which topological invariants are manifested in robustness against perturbations such as defects and disorder1. Their most prominent feature is the emergence of edge states at the boundary between areas with different topological properties. The observable physical effect is unidirectional robust transport of these edge states. Topological insulators were originally observed in the integer quantum Hall effect2 (in which conductance is quantized in a strong magnetic field) and subsequently suggested3–5 and observed6 to exist without a magnetic field, by virtue of other effects such as strong spin–orbit interaction. These were systems of correlated electrons. During the past decade, the concepts of topological physics have been introduced into other fields, including microwaves7,8, photonic systems9,10, cold atoms11,12, acoustics13,14 and even mechanics15. Recently, topological insulators were suggested to be possible in exciton-polariton systems16–18 organized as honeycomb (graphene-like) lattices, under the influence of a magnetic field. Exciton-polaritons are part-light, part-matter quasiparticles that emerge from strong coupling of quantum-well excitons and cavity photons19. Accordingly, the predicted topological effects differ from all those demonstrated thus far. Here we demonstrate experimentally an exciton-polariton topological insulator. Our lattice of coupled semiconductor microcavities is excited non-resonantly by a laser, and an applied magnetic field leads to the unidirectional flow of a polariton wavepacket around the edge of the array. This chiral edge mode is populated by a polariton condensation mechanism. We use scanning imaging techniques in real space and Fourier space to measure photoluminescence and thus visualize the mode as it propagates. We demonstrate that the topological edge mode goes around defects, and that its propagation direction can be reversed by inverting the applied magnetic field. Our exciton-polariton topological insulator paves the way for topological phenomena that involve light–matter interaction, amplification and the interaction of exciton-polaritons as a nonlinear many-body system. A part-light, part-matter exciton-polariton topological insulator is created in an array of semiconductor microcavities.

363 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets, and possible future research directions.
Abstract: Control and detection of spin order in ferromagnetic materials is the main principle enabling magnetic information to be stored and read in current technologies. Antiferromagnetic materials, on the other hand, are far less utilized, despite having some appealing features. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring devices, and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromagnetic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. We also discuss possible research directions that are anticipated to be among the main topics defining the future of this rapidly developing field. An overview of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets, and possible future research directions.

334 citations


Journal ArticleDOI
20 Feb 2018
TL;DR: In this article, the authors used time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations.
Abstract: The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations. However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase. A sufficiently large magnetic field suppresses long-range magnetic order in α-RuCl3, leaving a disordered state with a gapped continuum spectrum of magnetic excitations, similar to that expected for the famous Kitaev quantum spin liquid. An international team led by Stephen E. Nagler from Oak Ridge National Laboratory in the USA performed time-of-flight neutron scattering to study low energy magnetic excitations of α-RuCl3. They observed that the application of a sufficiently large magnetic field to this material suppressed spin waves associated with the long-range order, and drove it to an unusual excited state. By comparison with calculations, these results are consistent with the Kitaev quantum spin liquid state in a magnetic field. The results provide important information of a possible route to producing gapped excitations related to magnetic Majorana Fermions towards topologically protected quantum computation.

Journal ArticleDOI
TL;DR: This work demonstrates field-free switching in ferromagnetic trilayers and describes a mechanism for spin-current generation at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence.
Abstract: Magnetic torques generated through spin–orbit coupling1–8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field9–14. One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin–orbit torque is relevant to energy-efficient control of spintronic devices. Spin–orbit torques are reported in ferromagnetic trilayers that lead to the switching of perpendicular magnetizations without an external magnetic field.

Journal ArticleDOI
TL;DR: In this paper, the authors reported the observation of a giant anomalous Nernst effect at room temperature in the full-Heusler ferromagnet Co2MnGa, an order of magnitude larger than the previous maximum value reported for a magnetic conductor.
Abstract: In conducting ferromagnets, an anomalous Nernst effect—the generation of an electric voltage perpendicular to both the magnetization and an applied temperature gradient—can be driven by the nontrivial geometric structure, or Berry curvature, of the wavefunction of the electrons1,2 Here, we report the observation of a giant anomalous Nernst effect at room temperature in the full-Heusler ferromagnet Co2MnGa, an order of magnitude larger than the previous maximum value reported for a magnetic conductor3,4 Our numerical and analytical calculations indicate that the proximity to a quantum Lifshitz transition between type-I and type-II magnetic Weyl fermions5–7 is responsible for the observed –Tlog(T) behaviour, with T denoting the temperature, and the enhanced value of the transverse thermoelectric conductivity The temperature dependence of the thermoelectric response in experiments and numerical calculations can be understood in terms of a quantum critical-scaling function predicted by the low-energy effective theory over more than a decade of temperatures Moreover, the observation of an unsaturated positive longitudinal magnetoconductance, or chiral anomaly8–10, also provides evidence for the existence of Weyl fermions11,12 in Co2MnGa A magnetic field and temperature gradient produce a large electric potential in a ferromagnet, indicating the possible presence of Weyl points The specific structure of Weyl points gives the electrons quantum-critical properties

Journal ArticleDOI
TL;DR: In this article, the authors show that tunneling conduction in the direction perpendicular to the crystalline planes exhibits a magnetoresistance as large as 10, 000 %, which is a new phenomenon that demonstrates the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.
Abstract: Magnetic layered van der Waals crystals are an emerging class of materials giving access to new physical phenomena, as illustrated by the recent observation of 2D ferromagnetism in Cr2Ge2Te6 and CrI3. Of particular interest in semiconductors is the interplay between magnetism and transport, which has remained unexplored. Here we report first magneto-transport measurements on exfoliated CrI3 crystals. We find that tunneling conduction in the direction perpendicular to the crystalline planes exhibits a magnetoresistance as large as 10 000 %. The evolution of the magnetoresistance with magnetic field and temperature reveals that the phenomenon originates from multiple transitions to different magnetic states, whose possible microscopic nature is discussed on the basis of all existing experimental observations. This observed dependence of the conductance of a tunnel barrier on its magnetic state is a new phenomenon that demonstrates the presence of a strong coupling between transport and magnetism in magnetic van der Waals semiconductors.

Journal ArticleDOI
01 Nov 2018
TL;DR: In this article, the authors show that the threshold current density of spin-orbit torque switching can be reduced by increasing the spin-transfer torque current density, and thus an optimal point for low-power perpendicular magnetic tunnel junction switching can also be found by tuning the two current densities.
Abstract: Magnetization switching in magnetic tunnel junctions using spin-transfer torque and spin–orbit torque is key to the development of future spintronic memories. However, both switching mechanisms suffer from intrinsic limitations. In particular, the switching current in spin-transfer torque devices needs to be lowered, whereas an external magnetic field is required for spin–orbit torque devices to achieve deterministic switching in perpendicular magnetic tunnel junctions. Here, we experimentally demonstrate field-free switching of three-terminal perpendicular-anisotropy magnetic tunnel junction devices through the interaction between spin–orbit and spin-transfer torques. We show that the threshold current density of spin–orbit torque switching can be reduced by increasing the spin-transfer torque current density, and thus an optimal point for low-power perpendicular magnetic tunnel junction switching can be found by tuning the two current densities. Furthermore, and due to this interplay, low-power switching in two-terminal perpendicular magnetic tunnel junctions without an external magnetic field is also achieved. The interplay between spin–orbit and spin-transfer torques can be used to develop a low-power route to magnetization switching of perpendicular magnetic tunnel junctions without an external magnetic field.

Journal ArticleDOI
TL;DR: In this article, a spherical harmonic model of the magnetic field of Jupiter was obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet, which provided the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of ~45 deg between perijoves.
Abstract: A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of ~45 deg between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.

Journal ArticleDOI
TL;DR: It is shown that ChBs are able to coexist with skyrmions over a wide range of parameters, which suggests their possible practical applications in novel magnetic solid-state memory devices, in which a stream of binary data bits can be encoded by a sequence of skyrMions and bobbers.
Abstract: Chiral magnetic skyrmions1,2 are nanoscale vortex-like spin textures that form in the presence of an applied magnetic field in ferromagnets that support the Dzyaloshinskii–Moriya interaction (DMI) because of strong spin–orbit coupling and broken inversion symmetry of the crystal3,4. In sharp contrast to other systems5,6 that allow for the formation of a variety of two-dimensional (2D) skyrmions, in chiral magnets the presence of the DMI commonly prevents the stability and coexistence of topological excitations of different types 7 . Recently, a new type of localized particle-like object—the chiral bobber (ChB)—was predicted theoretically in such materials 8 . However, its existence has not yet been verified experimentally. Here, we report the direct observation of ChBs in thin films of B20-type FeGe by means of quantitative off-axis electron holography (EH). We identify the part of the temperature–magnetic field phase diagram in which ChBs exist and distinguish two mechanisms for their nucleation. Furthermore, we show that ChBs are able to coexist with skyrmions over a wide range of parameters, which suggests their possible practical applications in novel magnetic solid-state memory devices, in which a stream of binary data bits can be encoded by a sequence of skyrmions and bobbers. Electron holography enables direct experimental verification of the existence of chiral bobbers in thin films of chiral magnets.

Journal ArticleDOI
TL;DR: In this paper, the authors present a general theory on skyrmion size and wall width, which are two fundamental quantities of a topological object that depend sensitively on material parameters such as exchange energy, magnetic anisotropy, Dzyaloshinskii-Moriya interaction, and magnetic field.
Abstract: A magnetic skyrmion is a topological object consisting of a skyrmion core, an outer domain, and a wall that separates the skyrmion core from the outer domain. The skyrmion size and wall width are two fundamental quantities of a skyrmion that depend sensitively on material parameters such as exchange energy, magnetic anisotropy, Dzyaloshinskii–Moriya interaction, and magnetic field. However, quantitative understanding of the two quantities is still very poor. Here we present a general theory on skyrmion size and wall width. The two formulas we obtained agree almost perfectly with simulations and experiments for a wide range of parameters, including most of the existing materials that support skyrmions.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the long-distance propagation of spin currents through hematite (α-Fe2O3), the most common antiferromagnetic iron oxide, exploiting the spin Hall effect for spin injection.
Abstract: Spintronics uses spins, the intrinsic angular momentum of electrons, as an alternative for the electron charge. Its long-term goal is in the development of beyond-Moore low dissipation technology devices. Recent progress demonstrated the long-distance transport of spin signals across ferromagnetic insulators. Antiferromagnetically ordered materials are however the most common class of magnetic materials with several crucial advantages over ferromagnetic systems. In contrast to the latter, antiferromagnets exhibit no net magnetic moment, which renders them stable and impervious to external fields. In addition, they can be operated at THz frequencies. While fundamentally their properties bode well for spin transport, previous indirect observations indicate that spin transmission through antiferromagnets is limited to short distances of a few nanometers. Here we demonstrate the long-distance, over tens of micrometers, propagation of spin currents through hematite (\alpha-Fe2O3), the most common antiferromagnetic iron oxide, exploiting the spin Hall effect for spin injection. We control the spin current flow by the interfacial spin-bias and by tuning the antiferromagnetic resonance frequency with an external magnetic field. This simple antiferromagnetic insulator is shown to convey spin information parallel to the compensated moment (N\'eel order) over distances exceeding tens of micrometers. This newly-discovered mechanism transports spin as efficiently as the net magnetic moments in the best-suited complex ferromagnets. Our results pave the way to ultra-fast, low-power antiferromagnet-insulator-based spin-logic devices that operate at room temperature and in the absence of magnetic fields.

Journal ArticleDOI
TL;DR: In this article, the magnetic moments in NiO, a typical natural antiferromagnet, can indeed be controlled by the spin torque with a relatively small electric current density (~4××107'A/cm2) and their orientation is detected by the transverse resistance resulting from the spin Hall magnetoresistance.
Abstract: For a long time, there were no efficient ways of controlling antiferromagnets. Quite a strong magnetic field was required to manipulate the magnetic moments because of a high molecular field and a small magnetic susceptibility. It was also difficult to detect the orientation of the magnetic moments since the net magnetic moment is effectively zero. For these reasons, research on antiferromagnets has not been progressed as drastically as that on ferromagnets which are the main materials in modern spintronic devices. Here we show that the magnetic moments in NiO, a typical natural antiferromagnet, can indeed be controlled by the spin torque with a relatively small electric current density (~4 × 107 A/cm2) and their orientation is detected by the transverse resistance resulting from the spin Hall magnetoresistance. The demonstrated techniques of controlling and detecting antiferromagnets would outstandingly promote the methodologies in the recently emerged “antiferromagnetic spintronics”. Furthermore, our results essentially lead to a spin torque antiferromagnetic memory.

Journal ArticleDOI
TL;DR: In this paper, the authors make use of laser-triggered photoconductive switches to measure the ultrafast transport properties of monolayer graphene, driven by a mid-infrared femtosecond pulse of circularly polarized light.
Abstract: Many striking non-equilibrium phenomena have been discovered or predicted in optically-driven quantum solids, ranging from light-induced superconductivity to Floquet-engineered topological phases. These effects are expected to lead to dramatic changes in electrical transport, but can only be comprehensively characterized or functionalized with a direct interface to electrical devices that operate at ultrafast speeds. Here, we make use of laser-triggered photoconductive switches to measure the ultrafast transport properties of monolayer graphene, driven by a mid-infrared femtosecond pulse of circularly polarized light. The goal of this experiment is to probe the transport signatures of a predicted light-induced topological band structure in graphene, similar to the one originally proposed by Haldane. We report the observation of an anomalous Hall effect in the absence of an applied magnetic field. We also extract quantitative properties of the non-equilibrium state. The dependence of the effect on a gate potential used to tune the Fermi level reveals multiple features that reflect the effective band structure expected from Floquet theory. This includes a ~60 meV wide conductance plateau centered at the Dirac point, where a gap of approximately equal magnitude is expected to open. We also find that when the Fermi level lies within this plateau, the estimated anomalous Hall conductance saturates around ~1.8$\pm$0.4 e$^2$/h.

Journal ArticleDOI
TL;DR: In this paper, the nonlinear Hall effect (NLHE) was observed in the electrical transport of the non-magnetic 2D quantum material, bilayer WTe2.
Abstract: The electrical Hall effect is the production of a transverse voltage under an out-of-plane magnetic field. Historically, studies of the Hall effect have led to major breakthroughs including the discoveries of Berry curvature and the topological Chern invariants. In magnets, the internal magnetization allows Hall conductivity in the absence of external magnetic field. This anomalous Hall effect (AHE) has become an important tool to study quantum magnets. In nonmagnetic materials without external magnetic fields, the electrical Hall effect is rarely explored because of the constraint by time-reversal symmetry. However, strictly speaking, only the Hall effect in the linear response regime, i.e., the Hall voltage linearly proportional to the external electric field, identically vanishes due to time-reversal symmetry. The Hall effect in the nonlinear response regime, on the other hand, may not be subject to such symmetry constraints. Here, we report the observation of the nonlinear Hall effect (NLHE) in the electrical transport of the nonmagnetic 2D quantum material, bilayer WTe2. Specifically, flowing an electrical current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of magnetic field. The NLHE exhibits unusual properties sharply distinct from the AHE in metals: The NLHE shows a quadratic I-V characteristic; It strongly dominates the nonlinear longitudinal response, leading to a Hall angle of about 90 degree. We further show that the NLHE directly measures the "dipole moment" of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new Hall effect and provide a powerful methodology to detect Berry curvature in a wide range of nonmagnetic quantum materials in an energy-resolved way.

Journal ArticleDOI
TL;DR: The experimental realization of a uniform synthetic magnetic flux and the observation of Aharonov-Bohm cages in photonic lattices are reported on and the dynamics on the edge of the lattice are explored and how the corresponding edge states can be continuously connected to the topological edge states of the Creutz ladder.
Abstract: We report on the experimental realization of a uniform synthetic magnetic flux and the observation of Aharonov-Bohm cages in photonic lattices. Considering a rhombic array of optical waveguides, we engineer modulation-assisted tunneling processes that effectively produce nonzero magnetic flux per plaquette. This synthetic magnetic field for light can be tuned at will by varying the phase of the modulation. In the regime where half a flux quantum is realized in each plaquette, all the energy bands dramatically collapse into nondispersive (flat) bands and all eigenstates are completely localized. We demonstrate this Aharonov-Bohm caging by studying the propagation of light in the bulk of the photonic lattice. Besides, we explore the dynamics on the edge of the lattice and discuss how the corresponding edge states can be continuously connected to the topological edge states of the Creutz ladder. Our photonic lattice constitutes an appealing platform where the interplay between engineered gauge fields, frustration, localization, and topological properties can be finely studied.

Journal ArticleDOI
TL;DR: It is shown that NV magnetometry, combined with the analysis method, provides a unique tool to investigate this previously inaccessible phenomenon and finds a Néel-type skyrmion whose chirality is not left-handed, contrary to preceding reports.
Abstract: Magnetic skyrmions are two-dimensional non-collinear spin textures characterized by an integer topological number. Room-temperature skyrmions were recently found in magnetic multilayer stacks, where their stability was largely attributed to the interfacial Dzyaloshinskii–Moriya interaction. The strength of this interaction and its role in stabilizing the skyrmions is not yet well understood, and imaging of the full spin structure is needed to address this question. Here, we use a nitrogen-vacancy centre in diamond to measure a map of magnetic fields produced by a skyrmion in a magnetic multilayer under ambient conditions. We compute the manifold of candidate spin structures and select the physically meaningful solution. We find a Neel-type skyrmion whose chirality is not left-handed, contrary to preceding reports. We propose skyrmion tube-like structures whose chirality rotates through the film thickness. We show that NV magnetometry, combined with our analysis method, provides a unique tool to investigate this previously inaccessible phenomenon. The Dzyaloshinskii-Moriya interaction (DMI) is crucial to the stabilization of skyrmions but the contribution is not well understood. Here, the authors provide a methodology using the single electron spin of a nitrogen-vacancy center to image the fine structure of skyrmions which is attributed to the competition between the DMI and stray fields.

Journal ArticleDOI
TL;DR: In this article, the authors systematically characterize solar-like oscillations and granulation for 16,094 oscillating red giants, using end-of-mission long-cadence data.
Abstract: The Kepler mission has provided exquisite data to perform an ensemble asteroseismic analysis on evolved stars. In this work we systematically characterize solar-like oscillations and granulation for 16,094 oscillating red giants, using end-of-mission long-cadence data. We produced a homogeneous catalog of the frequency of maximum power (typical uncertainty $\\sigma_{\ u_{\\rm max}}$=1.6\\%), the mean large frequency separation ($\\sigma_{\\Delta\ u}$=0.6\\%), oscillation amplitude ($\\sigma_{\\rm A}$=4.7\\%), granulation power ($\\sigma_{\\rm gran}$=8.6\\%), power excess width ($\\sigma_{\\rm width}$=8.8\\%), seismically-derived stellar mass ($\\sigma_{\\rm M}$=7.8\\%), radius ($\\sigma_{\\rm R}$=2.9\\%), and thus surface gravity ($\\sigma_{\\log g}$=0.01 dex). Thanks to the large red giant sample, we confirm that red-giant-branch (RGB) and helium-core-burning (HeB) stars collectively differ in the distribution of oscillation amplitude, granulation power, and width of power excess, which is mainly due to the mass difference. The distribution of oscillation amplitudes shows an extremely sharp upper edge at fixed $\ u_{\\rm max}$, which might hold clues to understand the excitation and damping mechanisms of the oscillation modes. We find both oscillation amplitude and granulation power depend on metallicity, causing a spread of 15\\% in oscillation amplitudes and a spread of 25\\% in granulation power from [Fe/H]=-0.7 to 0.5 dex. Our asteroseismic stellar properties can be used as reliable distance indicators and age proxies for mapping and dating galactic stellar populations observed by Kepler. They will also provide an excellent opportunity to test asteroseismology using Gaia parallaxes, and lift degeneracies in deriving atmospheric parameters in large spectroscopic surveys such as APOGEE and LAMOST.

Journal ArticleDOI
TL;DR: A very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields is found.
Abstract: Recent studies have brought α-RuCl_{3} to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α-RuCl_{3}. These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.

Journal ArticleDOI
TL;DR: The quantum anomalous Hall effect (QAHE) as mentioned in this paper is a quantized Hall effect that occurs at zero magnetic field and its mechanism and properties are different from those of conventional quantum Hall effects (Q...
Abstract: The quantum anomalous Hall effect (QAHE) is a quantized Hall effect that occurs at zero magnetic field. Its mechanism and properties are different from those of conventional quantum Hall effects (Q...

Journal ArticleDOI
TL;DR: The observation of phase-dependent zero-bias conductance peaks measured by tunnelling spectroscopy at the end of Josephson junctions realized on a heterostructure consisting of aluminium on indium arsenide is reported.
Abstract: Majorana zero modes are quasiparticle states localized at the boundaries of topological superconductors that are expected to be ideal building blocks for fault-tolerant quantum computing. Several observations of zero-bias conductance peaks measured in tunneling spectroscopy above a critical magnetic field have been reported as experimental indications of Majorana zero modes in superconductor/semiconductor nanowires. On the other hand, two dimensional systems offer the alternative approach to confine Ma jorana channels within planar Josephson junctions, in which the phase difference {\phi} between the superconducting leads represents an additional tuning knob predicted to drive the system into the topological phase at lower magnetic fields. Here, we report the observation of phase-dependent zero-bias conductance peaks measured by tunneling spectroscopy at the end of Josephson junctions realized on a InAs/Al heterostructure. Biasing the junction to {\phi} ~ {\pi} significantly reduces the critical field at which the zero-bias peak appears, with respect to {\phi} = 0. The phase and magnetic field dependence of the zero-energy states is consistent with a model of Majorana zero modes in finite-size Josephson junctions. Besides providing experimental evidence of phase-tuned topological superconductivity, our devices are compatible with superconducting quantum electrodynamics architectures and scalable to complex geometries needed for topological quantum computing.

Journal ArticleDOI
TL;DR: In this paper, the polarity of the current pulses was used to switch the sign of the effective field acting on the antiferromagnetic sublattices of the Tetragonal CuMnAs.
Abstract: Antiferromagnets have several favourable properties as active elements in spintronic devices, including ultra-fast dynamics, zero stray fields and insensitivity to external magnetic fields 1 . Tetragonal CuMnAs is a testbed system in which the antiferromagnetic order parameter can be switched reversibly at ambient conditions using electrical currents 2 . In previous experiments, orthogonal in-plane current pulses were used to induce 90° rotations of antiferromagnetic domains and demonstrate the operation of all-electrical memory bits in a multi-terminal geometry 3 . Here, we demonstrate that antiferromagnetic domain walls can be manipulated to realize stable and reproducible domain changes using only two electrical contacts. This is achieved by using the polarity of the current to switch the sign of the current-induced effective field acting on the antiferromagnetic sublattices. The resulting reversible domain and domain wall reconfigurations are imaged using X-ray magnetic linear dichroism microscopy, and can also be detected electrically. Switching by domain-wall motion can occur at much lower current densities than those needed for coherent domain switching.

Journal ArticleDOI
TL;DR: In this article, the authors investigate r-process nucleosynthesis in 3D general-relativistic magnetohydrodynamic simulations of rapidly rotating strongly magnetized core collapse and find that production of nucleosynthetic material beyond the second peak is reduced by a factor of 100 when the magnetorotational jets produced by the rapidly rotating core undergo a kink instability.
Abstract: We investigate r-process nucleosynthesis in 3D general-relativistic magnetohydrodynamic simulations of rapidly rotating strongly magnetized core collapse. The simulations include a microphysical finite-temperature equation of state and a leakage scheme that captures the overall energetics and lepton number exchange due to postbounce neutrino emission and absorption. We track the composition of the ejected material using the nuclear reaction network SkyNet. Our results show that the 3D dynamics of magnetorotational core-collapse supernovae (CCSN) are important for their nucleosynthetic signature. We find that production of r-process material beyond the second peak is reduced by a factor of 100 when the magnetorotational jets produced by the rapidly rotating core undergo a kink instability. Our results indicate that 3D magnetorotationally powered CCSNe are robust r-process sources only if they are obtained by the collapse of cores with unrealistically large precollapse magnetic fields of the order of 10^(13) G. Additionally, a comparison simulation that we restrict to axisymmetry results in overly optimistic r-process production for lower magnetic field strengths.