scispace - formally typeset
Search or ask a question

Showing papers on "Respiratory epithelium published in 2017"


Journal ArticleDOI
21 Nov 2017-Chest
TL;DR: Insight into the innate immune properties of mucins and goblet cells support a shift from the current paradigm of repressing increased mucin expression to targeting regulation of specific mucins or mucin hyperconcentration in the abnormal airway milieu.

220 citations


Journal ArticleDOI
26 Oct 2017-Nature
TL;DR: A previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract is revealed and evidence is provided that the p63+KRT5+K RT7+ basal cells in this zone are the cells of origin for multi-layered epithelia and Barrett’s oesophagus is provided.
Abstract: In several organ systems, the transitional zone between different types of epithelium is a hotspot for pre-neoplastic metaplasia and malignancy, but the cells of origin for these metaplastic epithelia and subsequent malignancies remain unknown. In the case of Barrett's oesophagus, intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells. On the basis of a number of experimental models, several alternative cell types have been proposed as the source of this metaplasia but in all cases the evidence is inconclusive: no model completely mimics Barrett's oesophagus in terms of the presence of intestinal goblet cells. Here we describe a transitional columnar epithelium with distinct basal progenitor cells (p63+KRT5+KRT7+) at the squamous-columnar junction of the upper gastrointestinal tract in a mouse model. We use multiple models and lineage tracing strategies to show that this squamous-columnar junction basal cell population serves as a source of progenitors for the transitional epithelium. On ectopic expression of CDX2, these transitional basal progenitors differentiate into intestinal-like epithelium (including goblet cells) and thereby reproduce Barrett's metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues (including the anorectal junction) as well as in the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (believed to be a precursor of Barrett's oesophagus) are both characterized by the expansion of the transitional basal progenitor cells. Our findings reveal a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63+KRT5+KRT7+ basal cells in this zone are the cells of origin for multi-layered epithelium and Barrett's oesophagus.

162 citations


Journal ArticleDOI
TL;DR: The role of the tight junction of the airway epithelium as the predominating structure conferring epithelial tightness and preventing exudate formation and the impact of inflammatory perturbations on their function is emphasised.
Abstract: Inflammatory lung diseases like asthma bronchiale, chronic obstructive pulmonary disease and allergic airway inflammation are widespread public diseases that constitute an enormous burden to the health systems. Mainly classified as inflammatory diseases, the treatment focuses on strategies interfering with local inflammatory responses by the immune system. Inflammatory lung diseases predispose patients to severe lung failures like alveolar oedema, respiratory distress syndrome and acute lung injury. These life-threatening syndromes are caused by increased permeability of the alveolar and airway epithelium and exudate formation. However, the mechanism underlying epithelium barrier breakdown in the lung during inflammation is elusive. This review emphasises the role of the tight junction of the airway epithelium as the predominating structure conferring epithelial tightness and preventing exudate formation and the impact of inflammatory perturbations on their function.

153 citations


Journal ArticleDOI
07 Dec 2017-PLOS ONE
TL;DR: It is proposed that Skn-1a/Pou2f3 is the master regulator for the generation of the Trpm5-expressing microvillous cells in multiple tissues.
Abstract: Transient receptor potential channel M5 (Trpm5)-expressing cells, such as sweet, umami, and bitter taste cells in the oropharyngeal epithelium, solitary chemosensory cells in the nasal respiratory epithelium, and tuft cells in the small intestine, that express taste-related genes function as chemosensory cells. Previous studies demonstrated that Skn-1a/Pou2f3, a POU homeodomain transcription factor is expressed in these Trpm5-expressing chemosensory cells, and is necessary for their generation. Trpm5-expressing cells have recently been found in trachea, auditory tube, urethra, thymus, pancreatic duct, stomach, and large intestine. They are considered to be involved in protective responses to potential hazardous compounds as Skn-1a-dependent bitter taste cells, respiratory solitary chemosensory cells, and intestinal tuft cells are. In this study, we examined the expression and function of Skn-1a/Pou2f3 in Trpm5-expressing cells in trachea, auditory tube, urethra, thymus, pancreatic duct, stomach, and large intestine. Skn-1a/Pou2f3 is expressed in a majority of Trpm5-expressing cells in all tissues examined. In Skn-1a/Pou2f3-deficient mice, the expression of Trpm5 as well as marker genes for Trpm5-expressing cells were absent in all tested tissues. Immunohistochemical analyses demonstrated that two types of microvillous cells exist in trachea, urethra, and thymus, Trpm5-positive and Trpm5-negative cells. In Skn-1a/Pou2f3-deficient mice, a considerable proportion of Trpm5-negative and villin-positive microvillous cells remained present in these tissues. Thus, we propose that Skn-1a/Pou2f3 is the master regulator for the generation of the Trpm5-expressing microvillous cells in multiple tissues.

95 citations


Journal ArticleDOI
TL;DR: It is demonstrated that d-amino acids produced by nasal flora can inhibit innate immune responses through T1R and may shape the microbial community of the airways and establish a potential mechanism for interkingdom signaling in the airway mediated by bacterial d-Amino acids and the mammalian sweet taste receptor in airway chemosensory cells.
Abstract: In the upper respiratory epithelium, bitter and sweet taste receptors present in solitary chemosensory cells influence antimicrobial innate immune defense responses. Whereas activation of bitter taste receptors (T2Rs) stimulates surrounding epithelial cells to release antimicrobial peptides, activation of the sweet taste receptor (T1R) in the same cells inhibits this response. This mechanism is thought to control the magnitude of antimicrobial peptide release based on the sugar content of airway surface liquid. We hypothesized that d-amino acids, which are produced by various bacteria and activate T1R in taste receptor cells in the mouth, may also activate T1R in the airway. We showed that both the T1R2 and T1R3 subunits of the sweet taste receptor (T1R2/3) were present in the same chemosensory cells of primary human sinonasal epithelial cultures. Respiratory isolates of Staphylococcus species, but not Pseudomonas aeruginosa, produced at least two d-amino acids that activate the sweet taste receptor. In addition to inhibiting P. aeruginosa biofilm formation, d-amino acids derived from Staphylococcus inhibited T2R-mediated signaling and defensin secretion in sinonasal cells by activating T1R2/3. d-Amino acid-mediated activation of T1R2/3 also enhanced epithelial cell death during challenge with Staphylococcus aureus in the presence of the bitter receptor-activating compound denatonium benzoate. These data establish a potential mechanism for interkingdom signaling in the airway mediated by bacterial d-amino acids and the mammalian sweet taste receptor in airway chemosensory cells.

87 citations


Journal ArticleDOI
TL;DR: It is shown that airway epithelial cells display an increase in intracellular Ca2+ concentration within seconds of LPS application, which triggers signaling mechanisms that operate faster and independently from the canonical TLR4 immune pathway, leading to immediate protective responses such as direct antimicrobial action, increase in airway clearance, and the regulation of the inflammatory innate immune reaction.
Abstract: Lipopolysaccharides (LPS), the major components of the wall of gram-negative bacteria, trigger powerful defensive responses in the airways via mechanisms thought to rely solely on the Toll-like receptor 4 (TLR4) immune pathway. Here we show that airway epithelial cells display an increase in intracellular Ca2+ concentration within seconds of LPS application. This response occurs in a TLR4-independent manner, via activation of the transient receptor potential vanilloid 4 cation channel (TRPV4). We found that TRPV4 mediates immediate LPS-induced increases in ciliary beat frequency and the production of bactericidal nitric oxide. Upon LPS challenge TRPV4-deficient mice display exacerbated ventilatory changes and recruitment of polymorphonuclear leukocytes into the airways. We conclude that LPS-induced activation of TRPV4 triggers signaling mechanisms that operate faster and independently from the canonical TLR4 immune pathway, leading to immediate protective responses such as direct antimicrobial action, increase in airway clearance, and the regulation of the inflammatory innate immune reaction. LPS is a major component of gram-negative bacterial cell walls, and triggers immune responses in airway epithelium by activating TLR4. Here the authors show that LPS also activates TRPV4, thereby inducing fast defense responses such as nitric oxide production and increased ciliary beating in mice.

86 citations


Journal ArticleDOI
01 Oct 2017-Allergy
TL;DR: The transcription factor nuclear factor‐erythroid‐2‐related factor 2 (Nrf2) plays a key role in antioxidant response regulation and is implicated in the pathophysiology of asthma and allergic diseases.
Abstract: Background Interleukin (IL)-33 is implicated in the pathophysiology of asthma and allergic diseases. However, our knowledge is limited regarding how IL-33 release is controlled. The transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2) plays a key role in antioxidant response regulation. Objective The goal of this project was to investigate the role of cellular oxidative stress in controlling IL-33 release in airway epithelium. Methods Complementary approaches were used that included human bronchial epithelial cells and mouse models of airway type-2 immunity that were exposed to fungus Alternaria extract. The clinically available Nrf2 activator 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me) was used to evaluate the role of Nrf2-induced antioxidant molecules. Results Human bronchial epithelial cells produced reactive oxygen species (ROS) when they were exposed to Alternaria extract. ROS scavengers, such as glutathione (GSH) and N-acetyl cysteine, prevented extracellular secretion of ATP and increases in intracellular calcium concentrations that precede IL-33 release. Administration of CDDO-Me to mice enhanced expression of a number of antioxidant molecules in the lungs and elevated lung levels of endogenous GSH. Importantly, CDDO-Me treatment reduced allergen-induced ATP secretion and IL-33 release by airway epithelial cells in vitro and protected mice from IL-33 release and asthma-like pathological changes in the lungs. Conclusions The balance between oxidative stress and antioxidant responses plays a key role in controlling IL-33 release in airway epithelium. The therapeutic potential of Nrf2 activators needs to be considered for asthma and allergic airway diseases.

86 citations


Journal ArticleDOI
TL;DR: It is found that miR-34/449 suppresses the cell-cycle machinery in vivo and promotes cell- cycle exit, thereby allowing epithelial cell differentiation and preventing epithelial cells from exiting the cell cycle and entering a quiescent state.
Abstract: MicroRNAs (miRNAs) have been known to affect various biological processes by repressing expression of specific genes. Here we describe an essential function of the miR-34/449 family during differentiation of epithelial cells. We found that miR-34/449 suppresses the cell-cycle machinery in vivo and promotes cell-cycle exit, thereby allowing epithelial cell differentiation. Constitutive ablation of all six members of this miRNA family causes derepression of multiple cell cycle-promoting proteins, thereby preventing epithelial cells from exiting the cell cycle and entering a quiescent state. As a result, formation of motile multicilia is strongly inhibited in several tissues such as the respiratory epithelium and the fallopian tube. Consequently, mice lacking miR-34/449 display infertility as well as severe chronic airway disease leading to postnatal death. These results demonstrate that miRNA-mediated repression of the cell cycle is required to allow epithelial cell differentiation.

66 citations


Journal ArticleDOI
TL;DR: Smoking‐induced global distal‐to‐proximal reprogramming of the SAE represents a novel pathologic feature of COPD and is mediated by exaggerated epidermal growth factor/epidermalgrowth factor receptor signaling in SAE BCs.
Abstract: Rationale: Small airways are the primary site of pathologic changes in chronic obstructive pulmonary disease (COPD), the major smoking-induced lung disorder.Objectives: On the basis of the concept of proximal–distal patterning that determines regional specialization of the airway epithelium during lung development, we hypothesized that a similar program operates in the adult human lung being altered by smoking, leading to decreased regional identity of the small airway epithelium (SAE).Methods: The proximal and distal airway signatures were identified by comparing the transcriptomes of large and small airway epithelium samples obtained by bronchoscopy from healthy nonsmokers. The expression of these signatures was evaluated in the SAE of healthy smokers and smokers with COPD compared with that of healthy nonsmokers. The capacity of airway basal stem cells (BCs) to maintain region-associated phenotypes was evaluated using the air–liquid interface model.Measurements and Main Results: The distal and proximal...

65 citations


Journal ArticleDOI
TL;DR: Glycan array analyses demonstrated that Siglec-8, SigleC-9 and their mouse counterparts Sigleh-F and Siglee-E (respectively) have distinct glycan binding specificities, with Siglek-8 more structurally restricted than its mouse counterparts, while Sigle c-9 appears to be high molecular weight O-linked sialoglycoproteins in airways.
Abstract: Siglecs are transmembrane sialoglycan binding proteins, most of which are expressed on leukocyte subsets and have inhibitory motifs that translate cell surface ligation into immune suppression. In humans, Siglec-8 on eosinophils, mast cells and basophils and Siglec-9 on neutrophils, monocytes and some T-cells, mediate immune cell death, inhibition of immune mediator release and/or enhancement of anti-inflammatory mediator release. Endogenous sialoglycan ligands in tissues, mostly uncharacterized, engage siglecs on leukocytes to inhibit inflammation. Glycan array analyses demonstrated that Siglec-8, Siglec-9 and their mouse counterparts Siglec-F and Siglec-E (respectively) have distinct glycan binding specificities, with Siglec-8 more structurally restricted. Since siglecs are involved in lung inflammation, we studied Siglec-8 and Siglec-9 ligands in human lungs and airways. Siglec-8 ligands are in tracheal submucosal glands and cartilage but not airway epithelium or connective tissues, whereas Siglec-9 ligands are broadly distributed. Mouse airways do not have Siglec-8 ligands, whereas Siglec-9 ligands are on airways of both species. Extraction of human airways and lung followed by electrophoretic resolution and siglec blotting revealed Siglec-8 ligands in extracts of human trachea and cultured tracheal gland cells, but not parenchyma or cultured airway epithelial cells whereas Siglec-9 ligands were extracted from all airway and lung tissues and cells tested. Siglec-8 and Siglec-9 ligands in airways appear to be high molecular weight O-linked sialoglycoproteins. These data reveal differential glycan specificities of Siglec-8, Siglec-9 and their mouse counterparts Siglec-F and Siglec-E, and the tissue distributions and molecular characteristics of Siglec-8 and Siglec-9 sialoglycan ligands on human airways and lungs.

63 citations


Journal ArticleDOI
TL;DR: EGF‐AREG interplay in airway BC stem/progenitor cells is one of the mechanisms that mediates the interconnected pathogenesis of all major smoking‐induced lesions in the human airway epithelium.
Abstract: The airway epithelium of cigarette smokers undergoes dramatic remodeling with hyperplasia of basal cells (BC) and mucus-producing cells, squamous metaplasia, altered ciliated cell differentiation and decreased junctional barrier integrity, relevant to chronic obstructive pulmonary disease and lung cancer. In this study, we show that epidermal growth factor receptor (EGFR) ligand amphiregulin (AREG) is induced by smoking in human airway epithelium as a result of epidermal growth factor (EGF)-driven squamous differentiation of airway BC stem/progenitor cells. In turn, AREG induced a unique EGFR activation pattern in human airway BC, distinct from that evoked by EGF, leading to BC- and mucous hyperplasia, altered ciliated cell differentiation and impaired barrier integrity. Further, AREG promoted its own expression and suppressed expression of EGF, establishing an autonomous self-amplifying signaling loop in airway BC relevant for promotion of EGF-independent hyperplastic phenotypes. Thus, EGF-AREG interplay in airway BC stem/progenitor cells is one of the mechanisms that mediates the interconnected pathogenesis of all major smoking-induced lesions in the human airway epithelium. Stem Cells 2017;35:824-837.

Journal ArticleDOI
TL;DR: It is concluded that NF‐&kgr;B is a major controller of epithelial‐mesenchymal transition and pulmonary fibrosis, a finding that has potentially important relevance to airway remodeling produced by repetitive viral infections.
Abstract: Airway remodeling is resultant of a complex multicellular response associated with a progressive decline of pulmonary function in patients with chronic airway disease. Here, repeated infections with respiratory viruses are linked with airway remodeling through largely unknown mechanisms. Although acute activation of the Toll-like receptor (TLR) 3 pathway by extracellular polyinosinic:polycytidylic acid (poly[I:C]) induces innate signaling through the NF-κB transcription factor in normal human small airway epithelial cells, prolonged (repetitive or tonic) poly(I:C) stimulation produces chronic stress fiber formation, mesenchymal transition, and activation of a fibrotic program. Chronic poly(I:C) stimulation enhanced the expression of core mesenchymal regulators Snail family zinc finger 1, zinc finger E-box binding homeobox, mesenchymal intermediate filaments (vimentin), and extracellular matrix proteins (fibronectin-1), and collagen 1A. This mesenchymal transition was prevented by silencing expression of NF-κB/RelA or administration of a small-molecule inhibitor of the IκB kinase, BMS345541. Acute poly(I:C) exposure in vivo induced profound neutrophilic airway inflammation. When administered repetitively, poly(I:C) resulted in enhanced fibrosis observed by lung micro-computed tomography, second harmonic generation microscopy of optically cleared lung tissue, and by immunohistochemistry. Epithelial flattening, expansion of the epithelial mesenchymal trophic unit, and enhanced Snail family zinc finger 1 and fibronectin 1 expression in airway epithelium were also observed. Repetitive poly(I:C)-induced airway remodeling, fibrosis, and epithelial-mesenchymal transition was inhibited by BMS345541 administration. Based on this novel model of viral inflammation-induced remodeling, we conclude that NF-κB is a major controller of epithelial-mesenchymal transition and pulmonary fibrosis, a finding that has potentially important relevance to airway remodeling produced by repetitive viral infections.

Journal ArticleDOI
TL;DR: Immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis.
Abstract: Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.

Journal ArticleDOI
TL;DR: Microarray analysis of the airway epithelium identified OSGIN1 (oxidative stress induced growth inhibitor 1) as significantly upregulated by smoking, in both the large and small airwayEpithelium, and supported the concept that smoking-induced upregulation of OSGin1 is one link between smoking- induced stress and enhanced-autophagy in the human airways.
Abstract: Enhanced macroautophagy/autophagy is recognized as a component of the pathogenesis of smoking-induced airway disease. Based on the knowledge that enhanced autophagy is linked to oxidative stress and the DNA damage response, both of which are linked to smoking, we used microarray analysis of the airway epithelium to identify smoking upregulated genes known to respond to oxidative stress and the DNA damage response. This analysis identified OSGIN1 (oxidative stress induced growth inhibitor 1) as significantly upregulated by smoking, in both the large and small airway epithelium, an observation confirmed by an independent small airway microarray cohort, TaqMan PCR of large and small airway samples and RNA-Seq of small airway samples. High and low OSGIN1 expressors have different autophagy gene expression patterns in vivo. Genome-wide correlation of RNAseq analysis of airway basal/progenitor cells showed a direct correlation of OSGIN1 mRNA levels to multiple classic autophagy genes. In vitro cigarette smoke extract exposure of primary airway basal/progenitor cells was accompanied by a dose-dependent upregulation of OSGIN1 and autophagy induction. Lentivirus-mediated expression of OSGIN1 in human primary basal/progenitor cells induced puncta-like staining of MAP1LC3B and upregulation of MAP1LC3B mRNA and protein and SQSTM1 mRNA expression level in a dose and time-dependent manner. OSGIN1-induction of autophagosome, amphisome and autolysosome formation was confirmed by colocalization of MAP1LC3B with SQSTM1 or CD63 (endosome marker) and LAMP1 (lysosome marker). Both OSGIN1 overexpression and knockdown enhanced the smoking-evoked autophagic response. Together, these observations support the concept that smoking-induced upregulation of OSGIN1 is one link between smoking-induced stress and enhanced-autophagy in the human airway epithelium.

Journal ArticleDOI
TL;DR: It is demonstrated that epithelial-derived GM-CSF is a critical early signal during allergic sensitization to CRA and selectively restored Th2 responses in the absence of MyD88.

Journal ArticleDOI
TL;DR: It is demonstrated that transplanted mouse and human tracheobronchial epithelial TSC/progenitor cell mixtures are 20‐25% of airway epithelial cells, actively contribute to epithelial repair, and persist for at least 43 days.
Abstract: Cell therapy has the potential to cure disease through replacement of malfunctioning cells. Although the tissue stem cell (TSC) is thought to be the optimal therapeutic cell, transplantation of TSC/progenitor cell mixtures has saved lives. We previously purified the mouse tracheobronchial epithelial TSCs and reported that in vitro amplification generated numerous TSCs. However, these cultures also contained TSC-derived progenitor cells and TSC repurification by flow cytometry compromised TSC self-renewal. These limitations prompted us to determine if a TSC/progenitor cell mixture would repopulate the injured airway epithelium. We developed a cell transplantation protocol and demonstrate that transplanted mouse and human tracheobronchial epithelial TSC/progenitor cell mixtures are 20-25% of airway epithelial cells, actively contribute to epithelial repair, and persist for at least 43 days. At 2 weeks after transplantation, TSCs/progenitor cells differentiated into the three major epithelial cell types: basal, secretory, and ciliated. We conclude that cell therapy that uses adult tracheobronchial TSCs/progenitor cells is an effective therapeutic option.

Journal ArticleDOI
Hyun Woo Yang1, Seoung Ae Lee1, Jae Min Shin1, Il Ho Park1, Heung Man Lee 
TL;DR: Findings suggest that glucocorticoids might be a useful therapy for preventing tissue remodeling by blocking the EMT initiated by TGF-β1-induced MAPK and Snail/Slug signaling pathways in CRSwNP.
Abstract: Chronic rhinosinusitis with nasal polyps (CRSwNP) is closely associated with tissue remodeling. Epithelial-to-mesenchymal transition (EMT), a process of tissue remodeling, can be a therapeutic target of CRSwNP. Glucocorticoids are a type of steroid hormone that is used primarily in medical therapy for patients with CRSwNP; however, their effects on EMT in the airway epithelium remain unknown. To investigate the effects of dexamethasone and fluticasone propionate, a class of glucocorticoids, on transforming growth factor-β1 (TGF-β1) -induced EMT, we used A549 cells, human primary nasal epithelial cells (hPNECs) and ex vivo organ culture of the inferior turbinate. TGF-β1 induced changes in cell morphology, suppressed the expression of E-cadherin and enhanced the expression of a-smooth muscle actin, vimentin and fibronectin in A549 cells. However, glucocorticoids inhibited EMT, migration and invasion enhancement by TGF-β1. We found that the induction of phosphorylated ERK, p38 and the activity of Snail and Slug transcription factors by TGF-β1 were suppressed by glucocorticoids. Glucocorticoids also had a similar effect in hPNECs and ex vivo organ cultures of the inferior turbinate. These findings suggest that glucocorticoids might be a useful therapy for preventing tissue remodeling by blocking the EMT initiated by TGF-β1-induced MAPK and Snail/Slug signaling pathways in CRSwNP.

Journal ArticleDOI
TL;DR: Airway ICAM-1 expression is markedly upregulated in CAL group, which could be crucial in rhinoviral and NTHi infections.
Abstract: ICAM-1 is a major receptor for ~60% of human rhinoviruses, and non-typeable Haemophilus influenzae, two major pathogens in COPD. Increased cell-surface expression of ICAM-1 in response to tobacco smoke exposure has been suggested. We have investigated epithelial ICAM-1 expression in both the large and small airways, and lung parenchyma in smoking-related chronic airflow limitation (CAL) patients. We evaluated epithelial ICAM-1 expression in resected lung tissue: 8 smokers with normal spirometry (NLFS); 29 CAL patients (10 small-airway disease; 9 COPD-smokers; 10 COPD ex-smokers); Controls (NC): 15 normal airway/lung tissues. Immunostaining with anti-ICAM-1 monoclonal antibody was quantified with computerized image analysis. The percent and type of cells expressing ICAM-1 in large and small airway epithelium and parenchyma were enumerated, plus percentage of epithelial goblet and submucosal glands positive for ICAM- 1. A major increase in ICAM-1 expression in epithelial cells was found in both large (p < 0.006) and small airways (p < 0.004) of CAL subjects compared to NC, with NLFS being intermediate. In the CAL group, both basal and luminal areas stained heavily for ICAM-1, so did goblet cells and sub-mucosal glands, however in either NC or NLFS subjects, only epithelial cell luminal surfaces stained. ICAM-1 expression on alveolar pneumocytes (mainly type II) was slightly increased in CAL and NLFS (p < 0.01). Pack-years of smoking correlated with ICAM-1 expression (r = 0.49; p < 0.03). Airway ICAM-1 expression is markedly upregulated in CAL group, which could be crucial in rhinoviral and NTHi infections. The parenchymal ICAM-1 is affected by smoking, with no further enhancement in CAL subjects.

Journal ArticleDOI
TL;DR: A pivotal role is demonstrated for mitochondrial CaMKII in airway epithelium in mitochondrial ROS generation, eosinophilic inflammation, and AHR, providing insights into how mitochondrial ROS mediate features of allergic asthma.
Abstract: Excessive ROS promote allergic asthma, a condition characterized by airway inflammation, eosinophilic inflammation, and increased airway hyperreactivity (AHR). The mechanisms by which airway ROS are increased and the relationship between increased airway ROS and disease phenotypes are incompletely defined. Mitochondria are an important source of cellular ROS production, and our group discovered that Ca2+/calmodulin-dependent protein kinase II (CaMKII) is present in mitochondria and activated by oxidation. Furthermore, mitochondrial-targeted antioxidant therapy reduced the severity of allergic asthma in a mouse model. Based on these findings, we developed a mouse model of CaMKII inhibition targeted to mitochondria in airway epithelium. We challenged these mice with OVA or Aspergillus fumigatus. Mitochondrial CaMKII inhibition abrogated AHR, inflammation, and eosinophilia following OVA and A. fumigatus challenge. Mitochondrial ROS were decreased after agonist stimulation in the presence of mitochondrial CaMKII inhibition. This correlated with blunted induction of NF-κB, the NLRP3 inflammasome, and eosinophilia in transgenic mice. These findings demonstrate a pivotal role for mitochondrial CaMKII in airway epithelium in mitochondrial ROS generation, eosinophilic inflammation, and AHR, providing insights into how mitochondrial ROS mediate features of allergic asthma.

Journal ArticleDOI
TL;DR: Concerns are raised for inhaled therapies that selectively and effectively inhibit ORMDL3 in airway epithelium in asthma by exhibiting increased allergen-induced AHR independent of inflammation and associated with increased S1P generation.
Abstract: In this study, we used cre-lox techniques to generate mice selectively deficient in ORMDL3 in airway epithelium (Ormdl3Δ2-3/Δ2-3/CC10) to simulate an inhaled therapy that effectively inhibited ORMDL3 expression in the airway. In contrast to the anticipated reduction in airway hyperresponsiveness (AHR), OVA allergen-challenged Ormdl3Δ2-3/Δ2-3/CC10 mice had a significant increase in AHR compared with wild-type mice. Levels of airway inflammation, mucus, fibrosis, and airway smooth muscle were no different in Ormdl3Δ2-3/Δ2-3/CC10 and wild-type mice. However, levels of sphingosine-1-phosphate (S1P) were significantly increased in Ormdl3Δ2-3/Δ2-3/CC10 mice as well as in airway epithelial cells in which ORMDL3 was inhibited with small interfering RNA. Incubation of S1P with airway smooth muscle cells significantly increased contractility. Overall, Ormdl3Δ2-3/Δ2-3/CC10 mice exhibit increased allergen-induced AHR independent of inflammation and associated with increased S1P generation. These studies raise concerns for inhaled therapies that selectively and effectively inhibit ORMDL3 in airway epithelium in asthma.

Journal ArticleDOI
TL;DR: Preclinical studies suggest that modulation of the alveolar–capillary fluid homeostasis could represent novel therapeutic approaches to improve outcomes in infection-induced lung injury.
Abstract: The respiratory epithelium is lined by a tightly balanced fluid layer that allows normal O2 and CO2 exchange and maintains surface tension and host defense. To maintain alveolar fluid homeostasis, both the integrity of the alveolar-capillary barrier and the expression of epithelial ion channels and pumps are necessary to establish a vectorial ion gradient. However, during pulmonary infection, auto- and/or paracrine-acting mediators induce pathophysiological changes of the alveolar-capillary barrier, altered expression of epithelial Na,K-ATPase and of epithelial ion channels including epithelial sodium channel and cystic fibrosis membrane conductance regulator, leading to the accumulation of edema and impaired alveolar fluid clearance. These mediators include classical pro-inflammatory cytokines such as TGF-β, TNF-α, interferons, or IL-1β that are released upon bacterial challenge with Streptococcus pneumoniae, Klebsiella pneumoniae, or Mycoplasma pneumoniae as well as in viral infection with influenza A virus, pathogenic coronaviruses, or respiratory syncytial virus. Moreover, the pro-apoptotic mediator TNF-related apoptosis-inducing ligand, extracellular nucleotides, or reactive oxygen species impair epithelial ion channel expression and function. Interestingly, during bacterial infection, alterations of ion transport function may serve as an additional feedback loop on the respiratory inflammatory profile, further aggravating disease progression. These changes lead to edema formation and impair edema clearance which results in suboptimal gas exchange causing hypoxemia and hypercapnia. Recent preclinical studies suggest that modulation of the alveolar-capillary fluid homeostasis could represent novel therapeutic approaches to improve outcomes in infection-induced lung injury.

Journal ArticleDOI
TL;DR: Advanced models in which cells are exposed to respiratory pathogens, aerosolized medications and inhaled toxic substances such as cigarette smoke and air pollution are increasingly used to model e.g. acute exacerbations and provide a useful tool to study the effect of drugs used in treatment of asthma and COPD.

Journal ArticleDOI
TL;DR: RUNX1 plays a critical role in the lung inflammation after LPS‐induced injury and was required for the suppression of NF‐&kgr;B signaling pathway via inhibition of IkB kinase &bgr; in in vitro studies.
Abstract: Runt-related transcription factor 1 (RUNX1), a transcription factor expressed in multiple organs, plays important roles in embryonic development and hematopoiesis. Although RUNX1 is highly expressed in pulmonary tissues, its roles in lung function and homeostasis are unknown. We sought to assess the role of RUNX1 in lung development and inflammation after LPS challenge. Expression of RUNX1 was assessed in the developing and postnatal lung. RUNX1 was conditionally deleted in pulmonary epithelial cells. Pulmonary maturation was evaluated in the developing and postnatal lung, and lung inflammation was investigated in adult mice after LPS challenge. Interactions between RUNX1 and inflammatory signaling via NF-κB-IkB kinase β were assessed in vitro. RUNX1 was expressed in both mesenchymal and epithelial compartments of the developing and postnatal lung. The RUNX1 gene was efficiently deleted from respiratory epithelial cells producing Runx1∆/∆ mice. Although lung maturation was delayed, Runx1∆/∆ mice survived postnatally and subsequent growth and maturation of the lung proceeded normally. Increased respiratory distress, inflammation, and proinflammatory cytokines were observed in the Runx1-deleted mice after pulmonary LPS exposure. RUNX1 deletion was associated with the activation of NF-κB in respiratory epithelial cells. RUNX1 was required for the suppression of NF-κB signaling pathway via inhibition of IkB kinase β in in vitro studies. RUNX1 plays a critical role in the lung inflammation after LPS-induced injury.

Journal ArticleDOI
TL;DR: A critical role is revealed for EHF in regulating epithelial function in lung disease because changes in gene expression impact cell phenotype because EHF depletion alters epithelial secretion of a neutrophil chemokine and slows wound closure in HBE cells.

Journal ArticleDOI
TL;DR: In this article, the authors examined alterations in glycolysis in sputum samples from asthmatic patients and primary human nasal cells and used murine models of allergic asthma, as well as primary mouse tracheal epithelial cells, to evaluate the relevance of gly co-lysis.
Abstract: Background Emerging studies suggest that enhanced glycolysis accompanies inflammatory responses. Virtually nothing is known about the relevance of glycolysis in patients with allergic asthma. Objectives We sought to determine whether glycolysis is altered in patients with allergic asthma and to address its importance in the pathogenesis of allergic asthma. Methods We examined alterations in glycolysis in sputum samples from asthmatic patients and primary human nasal cells and used murine models of allergic asthma, as well as primary mouse tracheal epithelial cells, to evaluate the relevance of glycolysis. Results In a murine model of allergic asthma, glycolysis was induced in the lungs in an IL-1–dependent manner. Furthermore, administration of IL-1β into the airways stimulated lactate production and expression of glycolytic enzymes, with notable expression of lactate dehydrogenase A occurring in the airway epithelium. Indeed, exposure of mouse tracheal epithelial cells to IL-1β or IL-1α resulted in increased glycolytic flux, glucose use, expression of glycolysis genes, and lactate production. Enhanced glycolysis was required for IL-1β– or IL-1α–mediated proinflammatory responses and the stimulatory effects of IL-1β on house dust mite (HDM)–induced release of thymic stromal lymphopoietin and GM-CSF from tracheal epithelial cells. Inhibitor of κB kinase e was downstream of HDM or IL-1β and required for HDM-induced glycolysis and pathogenesis of allergic airways disease. Small interfering RNA ablation of lactate dehydrogenase A attenuated HDM-induced increases in lactate levels and attenuated HDM-induced disease. Primary nasal epithelial cells from asthmatic patients intrinsically produced more lactate compared with cells from healthy subjects. Lactate content was significantly higher in sputum supernatants from asthmatic patients, notably those with greater than 61% neutrophils. A positive correlation was observed between sputum lactate and IL-1β levels, and lactate content correlated negatively with lung function. Conclusions Collectively, these findings demonstrate that IL-1β/inhibitory κB kinase e signaling plays an important role in HDM-induced glycolysis and pathogenesis of allergic airways disease.

Journal ArticleDOI
TL;DR: Results show that direct exposure of bronchial epithelial cells to HDM leads to the production of reactive oxygen and nitrogen species that damage DNA and induce cytotoxicity, revealing a novel role for antioxidants and NOX inhibitors in mitigating allergic airway disease.
Abstract: Exposure to environmental allergens is a major risk factor for asthma development Allergens possess proteolytic activity that is capable of disrupting the airway epithelium Although there is increasing evidence pointing to asthma as an epithelial disease, the underlying mechanism that drives asthma has not been fully elucidated In this study, we investigated the direct DNA damage potential of aeroallergens on human bronchial epithelial cells and elucidated the mechanisms mediating the damage Human bronchial epithelial cells, BEAS-2B, directly exposed to house dust mites (HDM) resulted in enhanced DNA damage, as measured by the CometChip and the staining of DNA double-strand break marker, γH2AX HDM stimulated cellular reactive oxygen species production, increased mitochondrial oxidative stress, and promoted nitrosative stress Notably, expression of nuclear factor erythroid 2-related factor 2-dependent antioxidant genes was reduced immediately after HDM exposure, suggesting that HDM altered antioxidant responses HDM exposure also reduced cell proliferation and induced cell death Importantly, HDM-induced DNA damage can be prevented by the antioxidants glutathione and catalase, suggesting that HDM-induced reactive oxygen and nitrogen species can be neutralized by antioxidants Mechanistic studies revealed that HDM-induced cellular injury is NADPH oxidase (NOX)-dependent, and apocynin, a NOX inhibitor, protected cells from double-strand breaks induced by HDM Our results show that direct exposure of bronchial epithelial cells to HDM leads to the production of reactive oxygen and nitrogen species that damage DNA and induce cytotoxicity Antioxidants and NOX inhibitors can prevent HDM-induced DNA damage, revealing a novel role for antioxidants and NOX inhibitors in mitigating allergic airway disease

Journal ArticleDOI
TL;DR: Activation of β2AR signaling solely on airway epithelium is sufficient to restore/promote the cardinal features of asthma, including inflammation, mucous metaplasia, and AHR, and these studies support the role of the airway tissue as a master regulator of key Features of asthma.
Abstract: The mostly widely used bronchodilators in asthma therapy are β2-adrenoreceptor (β2AR) agonists, but their chronic use causes paradoxical adverse effects. We have previously determined that β2AR activation is required for expression of the asthma phenotype in mice, but the cell types involved are unknown. We now demonstrate that β2AR signaling in the airway epithelium is sufficient to mediate key features of the asthmatic responses to IL-13 in murine models. Our data show that inhibition of β2AR signaling with an aerosolized antagonist attenuates airway hyperresponsiveness (AHR), eosinophilic inflammation, and mucus-production responses to IL-13, whereas treatment with an aerosolized agonist worsens these phenotypes, suggesting that β2AR signaling on resident lung cells modulates the asthma phenotype. Labeling with a fluorescent β2AR ligand shows the receptors are highly expressed in airway epithelium. In β2AR−/− mice, transgenic expression of β2ARs only in airway epithelium is sufficient to rescue IL-13–induced AHR, inflammation, and mucus production, and transgenic overexpression in WT mice exacerbates these phenotypes. Knockout of β-arrestin-2 (βarr-2−/−) attenuates the asthma phenotype as in β2AR−/− mice. In contrast to eosinophilic inflammation, neutrophilic inflammation was not promoted by β2AR signaling. Together, these results suggest β2ARs on airway epithelial cells promote the asthma phenotype and that the proinflammatory pathway downstream of the β2AR involves βarr-2. These results identify β2AR signaling in the airway epithelium as capable of controlling integrated responses to IL-13 and affecting the function of other cell types such as airway smooth muscle cells.

Journal ArticleDOI
TL;DR: Primary respiratory epithelial cell infection with NTM at the ALI identified ciliary function, cholesterol biosynthesis, and cytokine/chemokine production as major host responses to infection.
Abstract: The incidence of pulmonary nontuberculous mycobacteria (NTM) disease is increasing, but host responses in respiratory epithelium infected with NTM are not fully understood. In this work, we aimed to identify infection-relevant gene expression signatures of NTM infection of the respiratory epithelium. We infected air-liquid interface (ALI) primary respiratory epithelial cell cultures with Mycobacterium avium subsp. avium (MAC) or Mycobacterium abscessus subsp. abscessus (MAB). We used cells from four different donors to obtain generalizable data. Differentiated respiratory epithelial cells at the ALI were infected with MAC or MAB at a multiplicity of infection of 100:1 or 1,000:1, and RNA sequencing was performed at Days 1 and 3 after infection. In response to infection, we found down-regulation of ciliary genes but upregulation of genes associated with cytokines/chemokines, such as IL-32, and cholesterol biosynthesis. Inflammatory response genes tended to be more upregulated by MAB than by MAC infection. Primary respiratory epithelial cell infection with NTM at the ALI identified ciliary function, cholesterol biosynthesis, and cytokine/chemokine production as major host responses to infection. Some of these pathways may be amenable to therapeutic manipulation.

Journal ArticleDOI
TL;DR: As expected, SmallAir™ contained few Muc5‐Ac positive cells (goblet cells) and CC‐10, a specific marker of Club cells, was highly expressed in Small airway model, but both MucilAir and SmallAir contain basal cells and ciliated cells, showing cilia beating and mucociliary clearance.

Journal ArticleDOI
TL;DR: Observations identify Zn deficiency as a significant codeterminant with CSE as a factor leading to an increase in airway epithelial permeability, which may represent a promising strategy to ameliorate the leaky barrier phenotype that is synonymous with COPD.
Abstract: There is now convincing evidence that the airway epithelium drives the pathogenesis of COPD. A major aspect of this is the disease-related reduction in barrier function that is potentiated by dysregulation of tight junction (TJ) protein complexes. However, a significant number of studies using in vitro smoke exposure models have not observed alterations in barrier permeability. We have previously shown that zinc (Zn) is an influential cytoprotective factor for the airway epithelium, and its depletion by cigarette smoke produces disease-related modifications consistent with inflammatory changes in COPD. We hypothesized that Zn deficiency is a significant co-stimulus with cigarette smoke extract (CSE) for potentiating the leaky barrier phenotype exhibited in COPD. We employed an ex vivo model of differentiated human airway epithelium exposed to Zn depletion and CSE to determine the contribution of Zn in maintaining normal epithelial permeability. Western blot analysis demonstrated a significant downregulation of the TJ proteins such as ZO-1 (-1.93-fold, P<0.05) and Claudin-1 (-3.37-fold, P<0.01) with the combination exposure. Assessment of barrier function via paracellular ionic conductance and tracer permeability also showed that Zn depletion was an important factor, which potentiated an increase in epithelial permeability (P<0.001 for both) compared to Zn depletion or CSE exposures in isolation. Visual inspection of the epithelium using transmission electron microscopy revealed a marked reduction in junction complexes between the adjacent airway epithelial cells treated with a combination of Zn depletion and CSE. These observations identify Zn deficiency as a significant codeterminant with CSE as a factor leading to an increase in airway epithelial permeability. Hence, as Zn dyshomeostasis has been reported in the airway epithelium exposed to chronic cigarette smoke and inflammation, targeting these phenomena may represent a promising strategy to ameliorate the leaky barrier phenotype that is synonymous with COPD.