scispace - formally typeset
Search or ask a question
Institution

Academia Sinica

FacilityTaipei, Taiwan
About: Academia Sinica is a facility organization based out in Taipei, Taiwan. It is known for research contribution in the topics: Population & Gene. The organization has 52086 authors who have published 65998 publications receiving 1728114 citations. The organization is also known as: Central Research Academy.


Papers
More filters
Journal ArticleDOI
07 Mar 2008-Science
TL;DR: The crystal structures of S. aureus dehydrosqualene synthase are determined and this finding represents proof of principle for a virulence factor–based therapy against S.Aureus, resulting in colorless bacteria with increased susceptibility to killing by human blood and to innate immune clearance in a mouse infection model.
Abstract: Staphylococcus aureus produces hospital- and community-acquired infections, with methicillin-resistant S. aureus posing a serious public health threat. The golden carotenoid pigment of S. aureus, staphyloxanthin, promotes resistance to reactive oxygen species and host neutrophil-based killing, and early enzymatic steps in staphyloxanthin production resemble those for cholesterol biosynthesis. We determined the crystal structures of S. aureus dehydrosqualene synthase (CrtM) at 1.58 angstrom resolution, finding structural similarity to human squalene synthase (SQS). We screened nine SQS inhibitors and determined the structures of three, bound to CrtM. One, previously tested for cholesterol-lowering activity in humans, blocked staphyloxanthin biosynthesis in vitro (median inhibitory concentration approximately 100 nM), resulting in colorless bacteria with increased susceptibility to killing by human blood and to innate immune clearance in a mouse infection model. This finding represents proof of principle for a virulence factor-based therapy against S. aureus.

427 citations

Journal ArticleDOI
17 Jan 2019-Nature
TL;DR: The nonlinear Hall effect is observed in bilayer WTe2 in the absence of a magnetic field, providing a direct measure of the dipole moment of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayers WTe 2 under time-reversal-symmetric conditions.
Abstract: The electrical Hall effect is the production, upon the application of an electric field, of a transverse voltage under an out-of-plane magnetic field. Studies of the Hall effect have led to important breakthroughs, including the discoveries of Berry curvature and topological Chern invariants1,2. The internal magnetization of magnets means that the electrical Hall effect can occur in the absence of an external magnetic field2; this 'anomalous' Hall effect is important for the study of quantum magnets2-7. The electrical Hall effect has rarely been studied in non-magnetic materials without external magnetic fields, owing to the constraint of time-reversal symmetry. However, only in the linear response regime-when the Hall voltage is linearly proportional to the external electric field-does the Hall effect identically vanish as a result of time-reversal symmetry; the Hall effect in the nonlinear response regime is not subject to such symmetry constraints8-10. Here we report observations of the nonlinear Hall effect10 in electrical transport in bilayers of the non-magnetic quantum material WTe2 under time-reversal-symmetric conditions. We show that an electric current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of a magnetic field. The properties of this nonlinear Hall effect are distinct from those of the anomalous Hall effect in metals: the nonlinear Hall effect results in a quadratic, rather than linear, current-voltage characteristic and, in contrast to the anomalous Hall effect, the nonlinear Hall effect results in a much larger transverse than longitudinal voltage response, leading to a nonlinear Hall angle (the angle between the total voltage response and the applied electric field) of nearly 90 degrees. We further show that the nonlinear Hall effect provides a direct measure of the dipole moment10 of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new type of Hall effect and provide a way of detecting Berry curvature in non-magnetic quantum materials.

426 citations

Journal ArticleDOI
TL;DR: It is proposed that monocots branched off from dicots 140–150 Myr ago, at least 50 Myr younger than previous estimates based on the molecular clock hypothesis, and that the core eudicots diverged 100–115 Myr ago (Albian–Aptian of the Cretaceous).
Abstract: We estimated the dates of the monocot–dicot split and the origin of core eudicots using a large chloroplast (cp) genomic dataset. Sixty-one protein-coding genes common to the 12 completely sequenced cp genomes of land plants were concatenated and analyzed. Three reliable split events were used as calibration points and for cross references. Both the method based on the assumption of a constant rate and the Li–Tanimura unequal-rate method were used to estimate divergence times. The phylogenetic analyses indicated that nonsynonymous substitution rates of cp genomes are unequal among tracheophyte lineages. For this reason, the constant-rate method gave overestimates of the monocot–dicot divergence and the age of core eudicots, especially when fast-evolving monocots were included in the analysis. In contrast, the Li–Tanimura method gave estimates consistent with the known evolutionary sequence of seed plant lineages and with known fossil records. Combining estimates calibrated by two known fossil nodes and the Li–Tanimura method, we propose that monocots branched off from dicots 140–150 Myr ago (late Jurassic–early Cretaceous), at least 50 Myr younger than previous estimates based on the molecular clock hypothesis, and that the core eudicots diverged 100–115 Myr ago (Albian–Aptian of the Cretaceous). These estimates indicate that both the monocot–dicot divergence and the core eudicot’s age are older than their respective fossil records.

426 citations

Journal ArticleDOI
07 Jun 2018
TL;DR: This Primer addresses several aspects of HBV infection, including epidemiology, immune pathophysiology, diagnosis, prevention and management, including antiviral agents that directly act on viral replication and immunomodulators, such as interferon therapy.
Abstract: Hepatitis B virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans through immune anergy. Currently, 3.5% of the global population is chronically infected with HBV, although the incidence of HBV infections is decreasing owing to vaccination and, to a lesser extent, the use of antiviral therapy to reduce the viral load of chronically infected individuals. The course of chronic HBV infection typically comprises different clinical phases, each of which potentially lasts for decades. Well-defined and verified serum and liver biopsy diagnostic markers enable the assessment of disease severity, viral replication status, patient risk stratification and treatment decisions. Current therapy includes antiviral agents that directly act on viral replication and immunomodulators, such as interferon therapy. Antiviral agents for HBV include reverse transcriptase inhibitors, which are nucleoside or nucleotide analogues that can profoundly suppress HBV replication but require long-term maintenance therapy. Novel compounds are being actively investigated to achieve the goal of HBV surface antigen seroclearance (functional cure), a serological state that is associated with a higher remission rate (thus, no viral rebound) after treatment cessation and a lower rate of cirrhosis and hepatocellular carcinoma. This Primer addresses several aspects of HBV infection, including epidemiology, immune pathophysiology, diagnosis, prevention and management. Hepatitis B virus is a human hepatotropic DNA virus that can cause a lifelong chronic infection and progressive liver disease. This Primer discusses the epidemiology, mechanisms, diagnosis, prevention and management of chronic hepatitis B virus infection.

425 citations

Journal ArticleDOI
A. Abada1, Marcello Abbrescia2, Marcello Abbrescia3, Shehu S. AbdusSalam4  +1496 moreInstitutions (238)
TL;DR: In this paper, the authors describe the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider in collaboration with national institutes, laboratories and universities worldwide, and enhanced by a strong participation of industrial partners.
Abstract: Particle physics has arrived at an important moment of its history. The discovery of the Higgs boson, with a mass of 125 GeV, completes the matrix of particles and interactions that has constituted the “Standard Model” for several decades. This model is a consistent and predictive theory, which has so far proven successful at describing all phenomena accessible to collider experiments. However, several experimental facts do require the extension of the Standard Model and explanations are needed for observations such as the abundance of matter over antimatter, the striking evidence for dark matter and the non-zero neutrino masses. Theoretical issues such as the hierarchy problem, and, more in general, the dynamical origin of the Higgs mechanism, do likewise point to the existence of physics beyond the Standard Model. This report contains the description of a novel research infrastructure based on a highest-energy hadron collider with a centre-of-mass collision energy of 100 TeV and an integrated luminosity of at least a factor of 5 larger than the HL-LHC. It will extend the current energy frontier by almost an order of magnitude. The mass reach for direct discovery will reach several tens of TeV, and allow, for example, to produce new particles whose existence could be indirectly exposed by precision measurements during the earlier preceding e+e– collider phase. This collider will also precisely measure the Higgs self-coupling and thoroughly explore the dynamics of electroweak symmetry breaking at the TeV scale, to elucidate the nature of the electroweak phase transition. WIMPs as thermal dark matter candidates will be discovered, or ruled out. As a single project, this particle collider infrastructure will serve the world-wide physics community for about 25 years and, in combination with a lepton collider (see FCC conceptual design report volume 2), will provide a research tool until the end of the 21st century. Collision energies beyond 100 TeV can be considered when using high-temperature superconductors. The European Strategy for Particle Physics (ESPP) update 2013 stated “To stay at the forefront of particle physics, Europe needs to be in a position to propose an ambitious post-LHC accelerator project at CERN by the time of the next Strategy update”. The FCC study has implemented the ESPP recommendation by developing a long-term vision for an “accelerator project in a global context”. This document describes the detailed design and preparation of a construction project for a post-LHC circular energy frontier collider “in collaboration with national institutes, laboratories and universities worldwide”, and enhanced by a strong participation of industrial partners. Now, a coordinated preparation effort can be based on a core of an ever-growing consortium of already more than 135 institutes worldwide. The technology for constructing a high-energy circular hadron collider can be brought to the technology readiness level required for constructing within the coming ten years through a focused R&D programme. The FCC-hh concept comprises in the baseline scenario a power-saving, low-temperature superconducting magnet system based on an evolution of the Nb3Sn technology pioneered at the HL-LHC, an energy-efficient cryogenic refrigeration infrastructure based on a neon-helium (Nelium) light gas mixture, a high-reliability and low loss cryogen distribution infrastructure based on Invar, high-power distributed beam transfer using superconducting elements and local magnet energy recovery and re-use technologies that are already gradually introduced at other CERN accelerators. On a longer timescale, high-temperature superconductors can be developed together with industrial partners to achieve an even more energy efficient particle collider or to reach even higher collision energies.The re-use of the LHC and its injector chain, which also serve for a concurrently running physics programme, is an essential lever to come to an overall sustainable research infrastructure at the energy frontier. Strategic R&D for FCC-hh aims at minimising construction cost and energy consumption, while maximising the socio-economic impact. It will mitigate technology-related risks and ensure that industry can benefit from an acceptable utility. Concerning the implementation, a preparatory phase of about eight years is both necessary and adequate to establish the project governance and organisation structures, to build the international machine and experiment consortia, to develop a territorial implantation plan in agreement with the host-states’ requirements, to optimise the disposal of land and underground volumes, and to prepare the civil engineering project. Such a large-scale, international fundamental research infrastructure, tightly involving industrial partners and providing training at all education levels, will be a strong motor of economic and societal development in all participating nations. The FCC study has implemented a set of actions towards a coherent vision for the world-wide high-energy and particle physics community, providing a collaborative framework for topically complementary and geographically well-balanced contributions. This conceptual design report lays the foundation for a subsequent infrastructure preparatory and technical design phase.

425 citations


Authors

Showing all 52129 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jing Wang1844046202769
Jie Zhang1784857221720
Hyun-Chul Kim1764076183227
Yang Yang1642704144071
Yuh Nung Jan16246074818
Jongmin Lee1502257134772
Hui-Ming Cheng147880111921
Teruki Kamon1422034115633
Jian Yang1421818111166
I. V. Gorelov1391916103133
S. R. Hou1391845106563
Kaori Maeshima1391850105218
Jiangyong Jia138117391163
Kenneth Bloom1381958110129
Network Information
Related Institutions (5)
Chinese Academy of Sciences
634.8K papers, 14.8M citations

95% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

91% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

Spanish National Research Council
220.4K papers, 7.6M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
2022111
20212,414
20202,356
20192,330
20182,349