scispace - formally typeset
Search or ask a question
Institution

Clemson University

EducationClemson, South Carolina, United States
About: Clemson University is a education organization based out in Clemson, South Carolina, United States. It is known for research contribution in the topics: Population & Control theory. The organization has 20556 authors who have published 42518 publications receiving 1170779 citations. The organization is also known as: Clemson Agricultural College of South Carolina.


Papers
More filters
Journal ArticleDOI
01 Jul 2006-Carbon
TL;DR: In this article, the physical and chemical properties of activated carbons produced from commercial xylan, cellulose, and Kraft lignin by H 3 PO 4 activation at various process conditions were studied.

219 citations

Journal ArticleDOI
TL;DR: Results are obtained for domination number and independent domination number of a graph G, where G does not have an induced subgraph isomorphic to K 1,3, and γ ( G ) = i ( G ).

219 citations

Journal ArticleDOI
TL;DR: This study examined how the flexibility of an organization's IT infrastructure enhanced information generation and dissemination and that this increased their ability to respond to rapidly changing environments.

219 citations

Journal ArticleDOI
Abstract: Two studies examined how perceiving a stigma and barriers to care for psychological treatment moderate the relationships between stressors and psychological symptoms. One study utilized a sample of college students and the other a sample of U.S. Army soldiers. Factor analytic results from the two samples supported stigma and barriers to care being separate constructs. In the student sample, perceived stigma interacted with subjective stress to predict depression, such that the relationship between stress and depression was stronger when perceived stigma was high. In the military sample, barriers to care interacted with work overload to predict depression, such that the relationship between overload and depression was stronger when perceived barriers to care were high. Results reveal the importance of examining both stigma and barriers to care as moderators of the stressor–strain relationship, and reinforce the need to develop interventions to address stigma and remove barriers to care.

219 citations

Journal ArticleDOI
TL;DR: Burbidge et al. as discussed by the authors showed that the heavy nuclei were formed in three distinct nucleosynthetic processes, which they termed the r-, s-, and p-processes.
Abstract: Burbidge et al (1957) and Cameron (1957) laid out the framework for our understanding of the formation of the heavy nuclei (those nuclei with mass number A approx. greater than 70). From systematics in the solar system abundance distribution, Burbidge et al determined that the heavy nuclei were formed in three distinct nucleosynthetic processes, which they termed the r-, s-, and p-processes. That we still use these terms today is a credit to the soundness of this work done 37 years ago. We may understand how Burbidge et al and Cameron arrived at their conclusions from Figure 1. One population of nuclei, the s-nuclei, shows an abundance distribution with peaks near mass numbers 87, 138, and 208. These nuclei are made in a slow neutron-capture process, the s-process. A rapid neutron-capture process, the r-process, is responsible for the r-nuclei, whose abundance distribution shows peaks at mass numbers 80, 130, and 195. The p-process is responsible for production of the rarer, more proton-rich heavy isotopes (the p-nuclei) that cannot be made by neutron capture. The first quantitative evaluations of the ideas of Burbidge et al and Cameron came to light in the early 1960s with work on the s-process (Clayton et al 1961, Seeger et al 1965) and the r-process (Seeger et al 1965). These calculations further elucidated the mechanisms for heavy-element formation and showed the plausibility of the framework developed in the 1950s. Subsequent work has focused on determining the astrophysical sites where the r-, s-, and p-processes occurred with the help of improved nuclear details, stellar models, and abundances. A goal of this paper is to review the recent progress astrophysicists, astronomers, and physicists have made in these directions and to point out the problems that remain in our understanding of the formation of the heavy nuclei. Another, perhaps deeper, goal is to to seek some understanding of why there are three major processes available to nature for synthesis of heavy elements. It is impossible for a single paper to cover all relevant aspects of the r-, s-, and p-processes; therefore, where possible, references to other reviews are given. Readers should turn to these reviews for more details. Nevertheless, it is hoped that the present paper gives some flavor for the rich field of heavy-element synthesis.

219 citations


Authors

Showing all 20718 results

NameH-indexPapersCitations
Yury Gogotsi171956144520
Philip S. Yu1481914107374
Aaron Dominguez1471968113224
Danny Miller13351271238
Marco Ajello13153558714
David C. Montefiori12992070049
Frank L. Lewis114104560497
Jianqing Fan10448858039
Wei Chen103143844994
Ken A. Dill9940141289
Gerald Schubert9861434505
Rod A. Wing9833347696
Feng Chen95213853881
Jimin George9433162684
François Diederich9384346906
Network Information
Related Institutions (5)
Texas A&M University
164.3K papers, 5.7M citations

97% related

Pennsylvania State University
196.8K papers, 8.3M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

96% related

Purdue University
163.5K papers, 5.7M citations

96% related

Michigan State University
137K papers, 5.6M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202363
2022253
20212,407
20202,362
20192,080
20181,978