scispace - formally typeset
Search or ask a question
Institution

Hewlett-Packard

CompanyPalo Alto, California, United States
About: Hewlett-Packard is a company organization based out in Palo Alto, California, United States. It is known for research contribution in the topics: Signal & Layer (electronics). The organization has 34663 authors who have published 59808 publications receiving 1467218 citations. The organization is also known as: Hewlett Packard & Hewlett-Packard Company.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proved that one-way communications is necessary and sufficient for entanglement manipulations of a pure bipartite state and the supremum probability of obtaining a maximally entangled state (of any dimension) from an arbitrary state is determined.
Abstract: Suppose two distant observers Alice and Bob share a pure bipartite quantum state. By applying local operations and communicating with each other using a classical channel, Alice and Bob can manipulate it into some other states. Previous investigations of entanglement manipulations have been largely limited to a small number of strategies and their average outcomes. Here we consider a general entanglement manipulation strategy, and go beyond the average property. For a pure entangled state shared between two separated persons Alice and Bob, we show that the mathematical interchange symmetry of the Schmidt decomposition can be promoted into a physical symmetry between the actions of Alice and Bob. Consequently, the most general (multistep two-way-communications) strategy of entanglement manipulation of a pure state is, in fact, equivalent to a strategy involving only a single (generalized) measurement by Alice followed by one-way communications of its result to Bob. We also prove that strategies with one-way communications are generally more powerful than those without communications. In summary, one-way communications is necessary and sufficient for entanglement manipulations of a pure bipartite state. The supremum probability of obtaining a maximally entangled state (of any dimension) from an arbitrary state is determined, and a strategy for achieving this probability is constructed explicitly. One important question is whether collective manipulations in quantum mechanics can greatly enhance the probability of large deviations from the average behavior. We answer this question in the negative by showing that, given n pairs of identical partly entangled pure states $(|\ensuremath{\Psi}〉)$ with entropy of entanglement $E(|\ensuremath{\Psi}〉),$ the probability of getting $\mathrm{nK}$ $[KgE(|\ensuremath{\Psi}〉)]$ singlets out of entanglement concentration tends to zero as n tends to infinity.

277 citations

Patent
28 Oct 2002
TL;DR: In this article, the lancet can be driven to extend the tip outside the cartridge case for lancing the skin of the patient to yield blood, and the container has a compartment that contains at least one cartridge.
Abstract: A cassette containing cartridges for sampling blood from a patient. The cassette includes a container for storing a plurality of cartridges and at least one cartridge in the container. The cartridge includes a cartridge case and a lancet. The lancet has a tip and is housed in the cartridge case. The lancet can be driven to extend the tip outside the cartridge case for lancing the skin of the patient to yield blood. The container has a compartment that contains at least one cartridge. A cartridge from the compartment can be loaded onto a glucometer that drives the lancet in the cartridge to lance the skin of a patient.

277 citations

Journal ArticleDOI
TL;DR: In this article, the authors extend the tomographic reconstruction technique to two new regimes: one-and two-qutrit systems, and show how quantum-state tomography can be performed for multiqudits with a specific example illustrating how to achieve this in one- and two-qubit systems.
Abstract: Recently quantum tomography has been proposed as a fundamental tool for prototyping a few qubit quantum device. It allows the complete reconstruction of the state produced from a given input into the device. From this reconstructed density matrix, relevant quantum information quantities such as the degree of entanglement and entropy can be calculated. Generally, orthogonal measurements have been discussed for this tomographic reconstruction. In this paper, we extend the tomographic reconstruction technique to two new regimes. First, we show how nonorthogonal measurements allow the reconstruction of the state of the system provided the measurements span the Hilbert space. We then detail how quantum-state tomography can be performed for multiqudits with a specific example illustrating how to achieve this in one- and two-qutrit systems.

276 citations

Journal ArticleDOI
TL;DR: This work proposes to mitigate device shortcomings and exploit their dynamical character by building self-organizing, self-healing networks that implement massively parallel computations, useful for complex pattern recognition problems.
Abstract: Nanodevices have terrible properties for building Boolean logic systems: high defect rates, high variability, high death rates, drift, and (for the most part) only two terminals. Economical assembly requires that they be dynamical. We argue that strategies aimed at mitigating these limitations, such as defect avoidance/reconfiguration, or applying coding theory to circuit design, present severe scalability and reliability challenges. We instead propose to mitigate device shortcomings and exploit their dynamical character by building self-organizing, self-healing networks that implement massively parallel computations. The key idea is to exploit memristive nanodevice behavior to cheaply implement adaptive, recurrent networks, useful for complex pattern recognition problems. Pulse-based communication allows the designer to make trade-offs between power consumption and processing speed. Self-organization sidesteps the scalability issues of characterization, compilation and configuration. Network dynamics supplies a graceful response to device death. We present simulation results of such a network—a self-organized spatial filter array—that demonstrate its performance as a function of defects and device variation.

276 citations

Journal ArticleDOI
TL;DR: The proposed methodology suggests least squares estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS), which enables the treatment of linear space and time-variant blurring and arbitrary motion.
Abstract: This paper presents a new method based on adaptive filtering theory for superresolution restoration of continuous image sequences. The proposed methodology suggests least squares (LS) estimators which adapt in time, based on adaptive filters, least mean squares (LMS) or recursive least squares (RLS). The adaptation enables the treatment of linear space and time-variant blurring and arbitrary motion, both of them assumed known. The proposed new approach is shown to be of relatively low computational requirements. Simulations demonstrating the superresolution restoration algorithms are presented.

276 citations


Authors

Showing all 34676 results

NameH-indexPapersCitations
Andrew White1491494113874
Stephen R. Forrest1481041111816
Rafi Ahmed14663393190
Leonidas J. Guibas12469179200
Chenming Hu119129657264
Robert E. Tarjan11440067305
Hong-Jiang Zhang11246149068
Ching-Ping Wong106112842835
Guillermo Sapiro10466770128
James R. Heath10342558548
Arun Majumdar10245952464
Luca Benini101145347862
R. Stanley Williams10060546448
David M. Blei98378111547
Wei-Ying Ma9746440914
Network Information
Related Institutions (5)
IBM
253.9K papers, 7.4M citations

94% related

Samsung
163.6K papers, 2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Microsoft
86.9K papers, 4.1M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202223
2021240
20201,028
20191,269
2018964