scispace - formally typeset
Search or ask a question
Institution

Moscow State University

EducationMoscow, Russia
About: Moscow State University is a education organization based out in Moscow, Russia. It is known for research contribution in the topics: Catalysis & Laser. The organization has 66747 authors who have published 123358 publications receiving 1753995 citations. The organization is also known as: MSU & Lomonosov Moscow State University.


Papers
More filters
Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2240 moreInstitutions (157)
TL;DR: In this article, a measurement of the H→ττ signal strength is performed using events recorded in proton-proton collisions by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13TeV.

250 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, J. Abdallah, A. A. Abdelalim3  +3034 moreInstitutions (195)
TL;DR: In this paper, the production cross sections of the inclusive Drell-Yan processes W-+/- -> l nu and Z/gamma* -> ll (l = e, mu) are measured in proton-proton collisions at root s = 7 TeV with the ATLAS detector.
Abstract: The production cross sections of the inclusive Drell-Yan processes W-+/- -> l nu and Z/gamma* -> ll (l = e, mu) are measured in proton-proton collisions at root s = 7 TeV with the ATLAS detector. The cross sections are reported integrated over a fiducial kinematic range, extrapolated to the full range, and also evaluated differentially as a function of the W decay lepton pseudorapidity and the Z boson rapidity, respectively. Based on an integrated luminosity of about 35 pb(-1) collected in 2010, the precision of these measurements reaches a few percent. The integrated and the differential W-+/- and Z/gamma* cross sections in the e and mu channels are combined, and compared with perturbative QCD calculations, based on a number of different parton distribution sets available at next-to-next-to-leading order.

250 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent theoretical and experimental activities in the field and demonstrate dramatic progress in understanding of the phenomenon of superconductivity in quasi-one-dimensional nanostructures.
Abstract: Superconducting properties of metallic nanowires can be entirely different from those of bulk superconductors because of the dominating role played by thermal and quantum fluctuations of the order parameter. For superconducting wires with diameters below $ \sim 50$ nm quantum phase slippage is an important process which can yield a non-vanishing wire resistance down to very low temperatures. Further decrease of the wire diameter, for typical material parameters down to $\sim 10$ nm, results in proliferation of quantum phase slips causing a sharp crossover from superconducting to normal behavior even at T=0. A number of interesting phenomena associated both with quantum phase slips and with the parity effect occur in superconducting nanorings. We review recent theoretical and experimental activities in the field and demonstrate dramatic progress in understanding of the phenomenon of superconductivity in quasi-one-dimensional nanostructures.

250 citations

Journal ArticleDOI
TL;DR: The permanently low temperature in permafrost is a stabilizing factor that sustains life in deep cold biotopes and there is indirect evidence for adaptive physiological and biochemical processes in microorganisms during the long-term impact of cold.
Abstract: Deep subterranean layers may be regarded as the most stable environment for microorganisms where possible fluctuations should be explained by geological events only. The analysis of the total amount of microorganisms has revealed that in sedimentary deposits their number is only one order of magnitude lower than the same parameter in soil. Taking into account the depth of sediments the microbial biomass in subterranean rocks has to be considerably larger than that in soils. Permafrost is the most constant and stable environment among deep habitats. Microbial communities survive in permafrost for at least some millions of years. The diversity of organisms and of microbial activities after permafrost thawing displays distinct differences to those in soils. The abundance of the bacterial biomass assumed is comparable in frozen and unfrozen sediments. Therefore, the permanently low temperature in permafrost is a stabilizing factor that sustains life in deep cold biotopes. Studies of microbial communities in permafrost sediments of different lithology and age suggest that the level of subzero temperature and the duration of its influence define the ratio between the hypometabolic cells, readily reversible to proliferation, and the so-called viable but non-culturable cells (deep resting cells). To a certain extent, cell aggregates in the extracellular matrix may be regarded as an additional survival mechanism supporting the hypometabolic state of cells. There is indirect evidence for adaptive physiological and biochemical processes in microorganisms during the long-term impact of cold.

250 citations

Journal ArticleDOI
TL;DR: An extremely highly active cellobiohydrolase (CBH IIb or Cel6B) was isolated from Chrysosporium lucknowense UV18‐25 culture filtrate and demonstrated the highest ability for a deep degradation of crystalline cellulose amongst a few cellobIOhydrolases tested.
Abstract: An extremely highly active cellobiohydrolase (CBH IIb or Cel6B) was isolated from Chrysosporium lucknowense UV18-25 culture filtrate. The CBH IIb demonstrated the highest ability for a deep degradation of crystalline cellulose amongst a few cellobiohydrolases tested, including C. lucknowense CBH Ia, Ib, IIa, and Trichoderma reesei CBH I and II. Using purified C. lucknowense enzymes (CBH Ia, Ib, and IIb; endoglucanases II and V; beta-glucosidase, xylanase II), artificial multienzyme mixtures were reconstituted, displaying an extremely high performance in a conversion of different cellulosic substrates (Avicel, cotton, pretreated Douglas fir wood) to glucose. These mixtures were much or notably more effective in hydrolysis of the cellulosic substrates than the crude multienzyme C. lucknowense preparation and other crude cellulase samples produced by T. reesei and Penicillium verruculosum. Highly active cellulases are a key factor in bioconversion of plant lignocellulosic biomass to ethanol as an alternative to fossil fuels.

249 citations


Authors

Showing all 68238 results

NameH-indexPapersCitations
Krzysztof Matyjaszewski1691431128585
A. Gomes1501862113951
Robert J. Sternberg149106689193
James M. Tour14385991364
Alexander Belyaev1421895100796
Rainer Wallny1411661105387
I. V. Gorelov1391916103133
António Amorim136147796519
Halina Abramowicz134119289294
Grigory Safronov133135894610
Elizaveta Shabalina133142192273
Alexander Zhokin132132386842
Eric Conte132120684593
Igor V. Moskalenko13254258182
M. Davier1321449107642
Network Information
Related Institutions (5)
Russian Academy of Sciences
417.5K papers, 4.5M citations

96% related

Saint Petersburg State University
53.4K papers, 1.1M citations

93% related

Russian Academy
17.7K papers, 340.7K citations

88% related

National Academy of Sciences of Ukraine
59.4K papers, 573.4K citations

87% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023541
20221,582
20217,040
20208,674
20198,296
20187,187