scispace - formally typeset
Search or ask a question

Showing papers by "Moscow State University published in 2011"


Journal ArticleDOI
Jens Kattge1, Sandra Díaz2, Sandra Lavorel3, Iain Colin Prentice4, Paul Leadley5, Gerhard Bönisch1, Eric Garnier3, Mark Westoby4, Peter B. Reich6, Peter B. Reich7, Ian J. Wright4, Johannes H. C. Cornelissen8, Cyrille Violle3, Sandy P. Harrison4, P.M. van Bodegom8, Markus Reichstein1, Brian J. Enquist9, Nadejda A. Soudzilovskaia8, David D. Ackerly10, Madhur Anand11, Owen K. Atkin12, Michael Bahn13, Timothy R. Baker14, Dennis D. Baldocchi10, Renée M. Bekker15, Carolina C. Blanco16, Benjamin Blonder9, William J. Bond17, Ross A. Bradstock18, Daniel E. Bunker19, Fernando Casanoves20, Jeannine Cavender-Bares7, Jeffrey Q. Chambers21, F. S. Chapin22, Jérôme Chave3, David A. Coomes23, William K. Cornwell8, Joseph M. Craine24, B. H. Dobrin9, Leandro da Silva Duarte16, Walter Durka25, James J. Elser26, Gerd Esser27, Marc Estiarte28, William F. Fagan29, Jingyun Fang, Fernando Fernández-Méndez30, Alessandra Fidelis31, Bryan Finegan20, Olivier Flores32, H. Ford33, Dorothea Frank1, Grégoire T. Freschet34, Nikolaos M. Fyllas14, Rachael V. Gallagher4, Walton A. Green35, Alvaro G. Gutiérrez25, Thomas Hickler, Steven I. Higgins36, John G. Hodgson37, Adel Jalili, Steven Jansen38, Carlos Alfredo Joly39, Andrew J. Kerkhoff40, Don Kirkup41, Kaoru Kitajima42, Michael Kleyer43, Stefan Klotz25, Johannes M. H. Knops44, Koen Kramer, Ingolf Kühn16, Hiroko Kurokawa45, Daniel C. Laughlin46, Tali D. Lee47, Michelle R. Leishman4, Frederic Lens48, Tanja Lenz4, Simon L. Lewis14, Jon Lloyd49, Jon Lloyd14, Joan Llusià28, Frédérique Louault50, Siyan Ma10, Miguel D. Mahecha1, Peter Manning51, Tara Joy Massad1, Belinda E. Medlyn4, Julie Messier9, Angela T. Moles52, Sandra Cristina Müller16, Karin Nadrowski53, Shahid Naeem54, Ülo Niinemets55, S. Nöllert1, A. Nüske1, Romà Ogaya28, Jacek Oleksyn56, Vladimir G. Onipchenko57, Yusuke Onoda58, Jenny C. Ordoñez59, Gerhard E. Overbeck16, Wim A. Ozinga59, Sandra Patiño14, Susana Paula60, Juli G. Pausas60, Josep Peñuelas28, Oliver L. Phillips14, Valério D. Pillar16, Hendrik Poorter, Lourens Poorter59, Peter Poschlod61, Andreas Prinzing62, Raphaël Proulx63, Anja Rammig64, Sabine Reinsch65, Björn Reu1, Lawren Sack66, Beatriz Salgado-Negret20, Jordi Sardans28, Satomi Shiodera67, Bill Shipley68, Andrew Siefert69, Enio E. Sosinski70, Jean-François Soussana50, Emily Swaine71, Nathan G. Swenson72, Ken Thompson37, Peter E. Thornton73, Matthew S. Waldram74, Evan Weiher47, Michael T. White75, S. White11, S. J. Wright76, Benjamin Yguel3, Sönke Zaehle1, Amy E. Zanne77, Christian Wirth58 
Max Planck Society1, National University of Cordoba2, Centre national de la recherche scientifique3, Macquarie University4, University of Paris-Sud5, University of Western Sydney6, University of Minnesota7, VU University Amsterdam8, University of Arizona9, University of California, Berkeley10, University of Guelph11, Australian National University12, University of Innsbruck13, University of Leeds14, University of Groningen15, Universidade Federal do Rio Grande do Sul16, University of Cape Town17, University of Wollongong18, New Jersey Institute of Technology19, Centro Agronómico Tropical de Investigación y Enseñanza20, Lawrence Berkeley National Laboratory21, University of Alaska Fairbanks22, University of Cambridge23, Kansas State University24, Helmholtz Centre for Environmental Research - UFZ25, Arizona State University26, University of Giessen27, Autonomous University of Barcelona28, University of Maryland, College Park29, Universidad del Tolima30, University of São Paulo31, University of La Réunion32, University of York33, University of Sydney34, Harvard University35, Goethe University Frankfurt36, University of Sheffield37, University of Ulm38, State University of Campinas39, Kenyon College40, Royal Botanic Gardens41, University of Florida42, University of Oldenburg43, University of Nebraska–Lincoln44, Tohoku University45, Northern Arizona University46, University of Wisconsin–Eau Claire47, Naturalis48, James Cook University49, Institut national de la recherche agronomique50, Newcastle University51, University of New South Wales52, Leipzig University53, Columbia University54, Estonian University of Life Sciences55, Polish Academy of Sciences56, Moscow State University57, Kyushu University58, Wageningen University and Research Centre59, Spanish National Research Council60, University of Regensburg61, University of Rennes62, Université du Québec à Trois-Rivières63, Potsdam Institute for Climate Impact Research64, Technical University of Denmark65, University of California, Los Angeles66, Hokkaido University67, Université de Sherbrooke68, Syracuse University69, Empresa Brasileira de Pesquisa Agropecuária70, University of Aberdeen71, Michigan State University72, Oak Ridge National Laboratory73, University of Leicester74, Utah State University75, Smithsonian Institution76, University of Missouri77
01 Sep 2011
TL;DR: TRY as discussed by the authors is a global database of plant traits, including morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs, which can be used for a wide range of research from evolutionary biology, community and functional ecology to biogeography.
Abstract: Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

2,017 citations



Journal ArticleDOI
TL;DR: In this paper, the continuous-time quantum Monte Carlo (QMC) algorithm is used to solve the local correlation problem in quantum impurity models with high and low energy scales and is effective for wide classes of physically realistic models.
Abstract: Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as representations of quantum dots and molecular conductors and play an increasingly important role in the theory of "correlated electron" materials as auxiliary problems whose solution gives the "dynamical mean field" approximation to the self energy and local correlation functions. These applications require a method of solution which provides access to both high and low energy scales and is effective for wide classes of physically realistic models. The continuous-time quantum Monte Carlo algorithms reviewed in this article meet this challenge. We present derivations and descriptions of the algorithms in enough detail to allow other workers to write their own implementations, discuss the strengths and weaknesses of the methods, summarize the problems to which the new methods have been successfully applied and outline prospects for future applications.

1,116 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the energy landscapes of chemical systems have an overall shape and explore their intrinsic dimensionalities and the power of evolutionary CSP is illustrated through applications that examine matter at high pressure, where new, unexpected phenomena take place.
Abstract: Once the crystal structure of a chemical substance is known, many properties can be predicted reliably and routinely. Therefore if researchers could predict the crystal structure of a material before it is synthesized, they could significantly accelerate the discovery of new materials. In addition, the ability to predict crystal structures at arbitrary conditions of pressure and temperature is invaluable for the study of matter at extreme conditions, where experiments are difficult.Crystal structure prediction (CSP), the problem of finding the most stable arrangement of atoms given only the chemical composition, has long remained a major unsolved scientific problem. Two problems are entangled here: search, the efficient exploration of the multidimensional energy landscape, and ranking, the correct calculation of relative energies. For organic crystals, which contain a few molecules in the unit cell, search can be quite simple as long as a researcher does not need to include many possible isomers or confor...

945 citations


Journal ArticleDOI
TL;DR: The Global Fire Assimilation System (GFASv1.0) as mentioned in this paper calculates biomass burning emissions by assimilating Fire Radiative Power (FRP) observations from the MODIS instruments onboard the Terra and Aqua satellites.
Abstract: . The Global Fire Assimilation System (GFASv1.0) calculates biomass burning emissions by assimilating Fire Radiative Power (FRP) observations from the MODIS instruments onboard the Terra and Aqua satellites. It corrects for gaps in the observations, which are mostly due to cloud cover, and filters spurious FRP observations of volcanoes, gas flares and other industrial activity. The combustion rate is subsequently calculated with land cover-specific conversion factors. Emission factors for 40 gas-phase and aerosol trace species have been compiled from a literature survey. The corresponding daily emissions have been calculated on a global 0.5° × 0.5° grid from 2003 to the present. General consistency with the Global Fire Emission Database version 3.1 (GFED3.1) within its accuracy is achieved while maintaining the advantages of an FRP-based approach: GFASv1.0 makes use of the quantitative information on the combustion rate that is contained in the FRP observations, and it detects fires in real time at high spatial and temporal resolution. GFASv1.0 indicates omission errors in GFED3.1 due to undetected small fires. It also exhibits slightly longer fire seasons in South America and North Africa and a slightly shorter fire season in Southeast Asia. GFASv1.0 has already been used for atmospheric reactive gas simulations in an independent study, which found good agreement with atmospheric observations. We have performed simulations of the atmospheric aerosol distribution with and without the assimilation of MODIS aerosol optical depth (AOD). They indicate that the emissions of particulate matter need to be boosted by a factor of 2–4 to reproduce the global distribution of organic matter and black carbon. This discrepancy is also evident in the comparison of previously published top-down and bottom-up estimates. For the time being, a global enhancement of the particulate matter emissions by 3.4 is recommended. Validation with independent AOD and PM10 observations recorded during the Russian fires in summer 2010 show that the global Monitoring Atmospheric Composition and Change (MACC) aerosol model with GFASv1.0 aerosol emissions captures the smoke plume evolution well when organic matter and black carbon are enhanced by the recommended factor. In conjunction with the assimilation of MODIS AOD, the use of GFASv1.0 with enhanced emission factors quantitatively improves the forecast of the aerosol load near the surface sufficiently to allow air quality warnings with a lead time of up to four days.

940 citations


Journal ArticleDOI
J. Abadie1, B. P. Abbott1, R. Abbott1, T. D. Abbott2  +611 moreInstitutions (63)
TL;DR: In this paper, the authors demonstrate the squeezed-light enhancement of GEO600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3-4 years.
Abstract: Around the globe several observatories are seeking the first direct detection of gravitational waves (GWs). These waves are predicted by Einstein’s general theory of relativity1 and are generated, for example, by black-hole binary systems2. Present GW detectors are Michelson-type kilometre-scale laser interferometers measuring the distance changes between mirrors suspended in vacuum. The sensitivity of these detectors at frequencies above several hundred hertz is limited by the vacuum (zero-point) fluctuations of the electromagnetic field. A quantum technology—the injection of squeezed light3—offers a solution to this problem. Here we demonstrate the squeezed-light enhancement of GEO 600, which will be the GW observatory operated by the LIGO Scientific Collaboration in its search for GWs for the next 3–4 years. GEO 600 now operates with its best ever sensitivity, which proves the usefulness of quantum entanglement and the qualification of squeezed light as a key technology for future GW astronomy4.

810 citations


Journal ArticleDOI
S. Chatrchyan, Vardan Khachatryan, Albert M. Sirunyan, A. Tumasyan  +2268 moreInstitutions (158)
TL;DR: In this article, the transverse momentum balance in dijet and γ/Z+jets events is used to measure the jet energy response in the CMS detector, as well as the transversal momentum resolution.
Abstract: Measurements of the jet energy calibration and transverse momentum resolution in CMS are presented, performed with a data sample collected in proton-proton collisions at a centre-of-mass energy of 7TeV, corresponding to an integrated luminosity of 36pb−1. The transverse momentum balance in dijet and γ/Z+jets events is used to measure the jet energy response in the CMS detector, as well as the transverse momentum resolution. The results are presented for three different methods to reconstruct jets: a calorimeter-based approach, the ``Jet-Plus-Track'' approach, which improves the measurement of calorimeter jets by exploiting the associated tracks, and the ``Particle Flow'' approach, which attempts to reconstruct individually each particle in the event, prior to the jet clustering, based on information from all relevant subdetectors

750 citations


Journal ArticleDOI
TL;DR: In this paper, the construction of a Monte Carlo generator for high energy hadronic and nuclear collisions is discussed in detail, taking into consideration enhanced Pomeron diagrams which are resummed to all orders in the triple-Pomeron coupling.
Abstract: The construction of a Monte Carlo generator for high energy hadronic and nuclear collisions is discussed in detail. Interactions are treated in the framework of the Reggeon Field Theory, taking into consideration enhanced Pomeron diagrams which are resummed to all orders in the triple-Pomeron coupling. Soft and “semihard” contributions to the underlying parton dynamics are accounted for within the “semihard Pomeron” approach. The structure of cut enhanced diagrams is analyzed; they are regrouped into a number of subclasses characterized by positively-defined contributions which define partial weights for various “macro-configurations” of hadronic final states. An iterative procedure for a Monte Carlo generation of the structure of final states is described. The model results for hadronic cross sections and for particle production are compared to experimental data.

711 citations


Journal ArticleDOI
Stefan Hild1, M. R. Abernathy1, Fausto Acernese2, Pau Amaro-Seoane3, Nils Andersson4, K. G. Arun5, Fabrizio Barone2, B. Barr1, M. Barsuglia, Mark Beker, N. Beveridge1, S. Birindelli6, Suvadeep Bose7, L. Bosi, S. Braccini8, C. Bradaschia8, Tomasz Bulik9, Enrico Calloni10, Giancarlo Cella8, E. Chassande Mottin, S. Chelkowski11, Andrea Chincarini, James S. Clark12, E. Coccia13, C. Colacino8, J. Colas, A. Cumming1, L. Cunningham1, E. Cuoco, S. L. Danilishin14, Karsten Danzmann3, R. De Salvo15, T. Dent12, R. De Rosa10, L. Di Fiore10, A. Di Virgilio8, M. Doets16, V. Fafone13, Paolo Falferi17, R. Flaminio, J. Franc, F. Frasconi8, Andreas Freise11, D. Friedrich18, Paul Fulda11, Jonathan R. Gair19, Gianluca Gemme, E. Genin, A. Gennai11, A. Giazotto8, Kostas Glampedakis20, Christian Gräf3, M. Granata, Hartmut Grote3, G. M. Guidi21, A. Gurkovsky14, G. D. Hammond1, Mark Hannam12, Jan Harms15, D. Heinert22, Martin Hendry1, Ik Siong Heng1, E. Hennes, J. H. Hough, Sascha Husa23, S. H. Huttner1, G. T. Jones12, F. Y. Khalili14, Keiko Kokeyama11, Kostas D. Kokkotas20, Badri Krishnan3, Tjonnie G. F. Li, M. Lorenzini, H. Lück3, Ettore Majorana, Ilya Mandel24, Vuk Mandic25, M. Mantovani8, I. W. Martin1, Christine Michel, Y. Minenkov13, N. Morgado, S. Mosca10, B. Mours26, Helge Müller-Ebhardt18, P. G. Murray1, Ronny Nawrodt22, Ronny Nawrodt1, John Nelson1, Richard O'Shaughnessy27, Christian D. Ott15, C. Palomba, Angela Delli Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti28, R. Passaquieti8, D. Passuello8, Laurent Pinard, Wolfango Plastino29, Rosa Poggiani8, Rosa Poggiani28, P. Popolizio, Mirko Prato, M. Punturo, P. Puppo, D. S. Rabeling16, P. Rapagnani30, Jocelyn Read31, Tania Regimbau6, H. Rehbein3, S. Reid1, F. Ricci30, F. Richard, A. Rocchi, Sheila Rowan1, A. Rüdiger3, Lucía Santamaría15, Benoit Sassolas, Bangalore Suryanarayana Sathyaprakash12, Roman Schnabel3, C. Schwarz22, Paul Seidel22, Alicia M. Sintes23, Kentaro Somiya15, Fiona C. Speirits1, Kenneth A. Strain1, S. E. Strigin14, P. J. Sutton12, S. P. Tarabrin18, Andre Thüring3, J. F. J. van den Brand16, M. van Veggel1, C. Van Den Broeck, Alberto Vecchio11, John Veitch12, F. Vetrano21, A. Viceré21, S. P. Vyatchanin14, Benno Willke3, Graham Woan1, Kazuhiro Yamamoto 
TL;DR: In this article, a special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates, including the most relevant fundamental noise contributions.
Abstract: Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope (ET), a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this paper we describe sensitivity models for ET and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.

682 citations


Journal ArticleDOI
TL;DR: In this article, the authors studied the effect of collision centrality on the transverse momentum of PbPb collisions at the LHC with a data sample of 6.7 inverse microbarns.
Abstract: Jet production in PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV was studied with the CMS detector at the LHC, using a data sample corresponding to an integrated luminosity of 6.7 inverse microbarns. Jets are reconstructed using the energy deposited in the CMS calorimeters and studied as a function of collision centrality. With increasing collision centrality, a striking imbalance in dijet transverse momentum is observed, consistent with jet quenching. The observed effect extends from the lower cut-off used in this study (jet transverse momentum = 120 GeV/c) up to the statistical limit of the available data sample (jet transverse momentum approximately 210 GeV/c). Correlations of charged particle tracks with jets indicate that the momentum imbalance is accompanied by a softening of the fragmentation pattern of the second most energetic, away-side jet. The dijet momentum balance is recovered when integrating low transverse momentum particles distributed over a wide angular range relative to the direction of the away-side jet.

621 citations


Journal ArticleDOI
17 Nov 2011-Nature
TL;DR: It is shown that climate has been a major driver of population change over the past 50,000 years, however, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment.
Abstract: Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.

Journal ArticleDOI
M. Ageron1, Juanan Aguilar2, I. Al Samarai1, Arnauld Albert  +284 moreInstitutions (21)
TL;DR: The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational neutrino telescope in the Mediterranean Sea as mentioned in this paper, where the main purpose of the detector is to perform neutrinos astronomy and the apparatus also offers facilities for marine and Earth sciences.
Abstract: The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

Journal ArticleDOI
TL;DR: This paper conducted a survey of 1800 journalists from 18 countries and found that detachment, non-involvement, providing political information and monitoring the government are considered essential journalistic functions around the globe.
Abstract: This article reports key findings from a comparative survey of the role perceptions, epistemological orientations and ethical views of 1800 journalists from 18 countries. The results show that detachment, non-involvement, providing political information and monitoring the government are considered essential journalistic functions around the globe. Impartiality, the reliability and factualness of information, as well as adherence to universal ethical principles are also valued worldwide, though their perceived importance varies across countries. Various aspects of interventionism, objectivism and the importance of separating facts from opinion, on the other hand, seem to play out differently around the globe. Western journalists are generally less supportive of any active promotion of particular values, ideas and social change, and they adhere more to universal principles in their ethical decisions. Journalists from non-western contexts, on the other hand, tend to be more interventionist in their role perceptions and more flexible in their ethical views.

Journal ArticleDOI
TL;DR: Petrolog3 as discussed by the authors is a software for modeling fractional and equilibrium crystallization, reverse fractional crystallization at variable pressure, melt oxidation state and melt H2O contents, and postentrapment reequilibration of melt inclusions in olivine.
Abstract: This paper introduces Petrolog3, software for modeling (1) fractional and equilibrium crystallization, (2) reverse fractional crystallization at variable pressure, melt oxidation state and melt H2O contents, and (3) postentrapment reequilibration of melt inclusions in olivine. Petrolog3 offers an algorithm that allows calculations with a potentially unlimited number of (1) mineral-melt equilibrium models for major and trace elements and (2) models describing melt physical parameters such as density and viscosity, melt oxidation state, and solubility of fluid components in silicate melts. The current version of the software incorporates 46 mineral-melt equilibrium models for 8 minerals; 3 models describing distribution of trace elements between minerals and melt; 4 models of melt oxidation state; 1 model for H2O solubility in silicate melts; and 4 models describing melt density and viscosity. The idea behind the program is to provide the community of igneous petrologists and geochemists with a user-friendly interface for using any combinations of available mineral-melt equilibrium models for computer simulation of the crystallization process.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3034 moreInstitutions (179)
TL;DR: In this article, a search for squarks and gluinos in final states containing jets, missing transverse momentum and no electrons or muons is presented, and the data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider.

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +3104 moreInstitutions (190)
TL;DR: In this paper, the particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transversal momentum and the charged-particle multiplicity are measured.
Abstract: Measurements are presented from proton-proton collisions at centre-of-mass energies of root s = 0.9, 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared to each other and to various Monte Carlo (MC) models, including a new AMBT1 pythia6 tune. In all the kinematic regions considered, the particle multiplicities are higher than predicted by the MC models. The central charged-particle multiplicity per event and unit of pseudorapidity, for tracks with p(T) > 100 MeV, is measured to be 3.483 +/- 0.009 (stat) +/- 0.106 (syst) at root s = 0.9 TeV and 5.630 +/- 0.003 (stat) +/- 0.169 (syst) at root s = 7 TeV.

Journal ArticleDOI
TL;DR: Current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd, a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, is summarized.

Journal ArticleDOI
TL;DR: The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling and to invite the original authors to contribute their results, make them publicly available, share them with other users and to become members of the growing research community.
Abstract: The Online Chemical Modeling Environment is a web-based platform that aims to automate and simplify the typical steps required for QSAR modeling. The platform consists of two major subsystems: the database of experimental measurements and the modeling framework. A user-contributed database contains a set of tools for easy input, search and modification of thousands of records. The OCHEM database is based on the wiki principle and focuses primarily on the quality and verifiability of the data. The database is tightly integrated with the modeling framework, which supports all the steps required to create a predictive model: data search, calculation and selection of a vast variety of molecular descriptors, application of machine learning methods, validation, analysis of the model and assessment of the applicability domain. As compared to other similar systems, OCHEM is not intended to re-implement the existing tools or models but rather to invite the original authors to contribute their results, make them publicly available, share them with other users and to become members of the growing research community. Our intention is to make OCHEM a widely used platform to perform the QSPR/QSAR studies online and share it with other users on the Web. The ultimate goal of OCHEM is collecting all possible chemoinformatics tools within one simple, reliable and user-friendly resource. The OCHEM is free for web users and it is available online at http://www.ochem.eu.

Journal ArticleDOI
TL;DR: A new module of micrOMEGAs is presented devoted to the computation of indirect signals from dark matter annihilation in any new model with a stable weakly interacting particle.

Journal ArticleDOI
TL;DR: All small heat shock proteins play important "housekeeping" roles and regulate many vital processes; therefore, they are considered as attractive therapeutic targets.
Abstract: Modern classification of the family of human small heat shock proteins (the so-called HSPB) is presented, and the structure and properties of three members of this family are analyzed in detail. Ub...

Journal ArticleDOI
TL;DR: This tutorial defines and discusses key aspects of the problem of computational inference of aesthetics and emotion from images and describes data sets available for performing assessment and outline several real-world applications where research in this domain can be employed.
Abstract: In this tutorial, we define and discuss key aspects of the problem of computational inference of aesthetics and emotion from images. We begin with a background discussion on philosophy, photography, paintings, visual arts, and psychology. This is followed by introduction of a set of key computational problems that the research community has been striving to solve and the computational framework required for solving them. We also describe data sets available for performing assessment and outline several real-world applications where research in this domain can be employed. A significant number of papers that have attempted to solve problems in aesthetics and emotion inference are surveyed in this tutorial. We also discuss future directions that researchers can pursue and make a strong case for seriously attempting to solve problems in this research domain.

Journal ArticleDOI
TL;DR: The present review focuses on whether any serious alternatives to T. reesei enzymes in cellulose hydrolysis exist and whether fungi belonging to the genera Penicillium, Acremonium and Chrysosporium might represent such alternatives.

Journal ArticleDOI
Roel Aaij, A. A. Affolder1, Kazuyoshi Carvalho Akiba2, Michael Alexander3, S. Ali, Robert Appleby4, Marina Artuso5, A. Bates3, A. Bay6, O. Behrendt7, J. Benton8, M. van Beuzekom, P. M. Bjørnstad4, Galina Bogdanova9, Silvia Borghi4, A. Borgia5, T. J. V. Bowcock1, J. F. J. van den Brand, H. Brown1, Jan Buytaert7, O. Callot10, J. Carroll1, Gianluigi Casse1, P. Collins7, S. De Capua4, M. Doets, S. Donleavy1, D. Dossett11, R. Dumps7, Doris Eckstein, Lars Eklund3, C. Farinelli, S. Farry1, M. Ferro-Luzzi7, R. Frei6, J. Garofoli5, Marco Gersabeck4, T. J. Gershon11, A. Gong12, H. Gong12, Hamish Gordon7, Guido Haefeli6, J. Harrison4, V. Heijne, Karol Hennessy1, Wouter Hulsbergen, T. Huse13, David Hutchcroft1, A. Jaeger14, Pawel Jalocha15, E. Jans, Malcolm John15, James Keaveney16, Tjeerd Ketel, M. Korolev9, M. Kraan, T. Lastovicka17, George Lafferty4, T. E. Latham11, G. Lefeuvre5, Alexander Leflat9, M. Liles1, A. Van Lysebetten, G. MacGregor4, Franciole Da Cunha Marinho2, R. McNulty18, M. Merkin9, Dermot Moran19, R. Mountain5, I. Mous, J. Mylroie-Smith1, Matthew Needham20, Nikolay Nikitin9, A. Noor1, Agnieszka Oblakowska-Mucha21, A. Papadelis, M. Pappagallo3, C. Parkes4, G. D. Patel1, B. Rakotomiaramanana6, S. Redford7, M. M. Reid11, Kurt Rinnert1, Eduardo Rodrigues4, Aldo Saavedra22, Manuel Schiller, O. Schneider6, Tara Shears1, R. Silva Coutinho11, N. A. Smith1, Tomasz Szumlak21, C. Thomas15, J. van Tilburg, M. Tobin6, Jaap Velthuis8, B. Verlaat, Sébastien Viret23, V. Volkov9, C. Wallace11, Jing Wang5, A. D. Webber4, Mark Whitehead11, E. G. Zverev9 
TL;DR: The Vertex Locator (VELO) as discussed by the authors is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment, which is operated in vacuum and uses a bi-phase CO2 cooling system.
Abstract: The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment The performance of the detector during the first years of its physics operation is reviewed The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7mm from the LHC beam for physics data taking The performance and stability of these characteristic features of the detector are described, and details of the material budget are given The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described The system performance is fully characterised The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 mu m is achieved at the optimal track angle The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 05%, and the detector has less than 1% of faulty strips The proximity of the detector to the beam means that the inner regions of the n(+)-on-n sensors have undergone space-charge sign inversion due to radiation damage The VELO performance parameters that drive the experiment's physics sensitivity are also given The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 mu m for translations in the plane transverse to the beam A primary vertex resolution of 13 mu m in the transverse plane and 71 mu m along the beam axis is achieved for vertices with 25 tracks An impact parameter resolution of less than 35 mu m is achieved for particles with transverse momentum greater than 1GeV/c

Journal ArticleDOI
TL;DR: In this article, the fluence of 1ES 0229+200 as seen by Fermi-LAT for different EGMF profiles was calculated using a Monte Carlo simulation for the cascade development.
Abstract: High-energy photons from blazars can initiate electromagnetic pair cascades interacting with the extragalactic photon background. The charged component of such cascades is deflected and delayed by extragalactic magnetic fields (EGMFs), thereby reducing the observed point-like flux and potentially leading to multi-degree images in the GeV energy range. We calculate the fluence of 1ES 0229+200 as seen by Fermi-LAT for different EGMF profiles using a Monte Carlo simulation for the cascade development. The non-observation of 1ES 0229+200 by Fermi-LAT suggests that the EGMF fills at least 60% of space with fields stronger than G for lifetimes of TeV activity of yr. Thus, the (non-)observation of GeV extensions around TeV blazars probes the EGMF in voids and puts strong constraints on the origin of EGMFs: either EGMFs were generated in a space filling manner (e.g., primordially) or EGMFs produced locally (e.g., by galaxies) have to be efficiently transported to fill a significant volume fraction as, e.g., by galactic outflows.

Journal ArticleDOI
TL;DR: Results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces, and Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria.
Abstract: Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 105 c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 105 c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 105 c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.

Journal ArticleDOI
Roel Aaij, Bernardo Adeva1, Marco Adinolfi2, C. Adrover  +554 moreInstitutions (36)
TL;DR: In this paper, the production of J/psi mesons in proton-proton collisions at root s = 7 TeV is studied with the LHCb detector at the HetNets.
Abstract: The production of J/psi mesons in proton-proton collisions at root s = 7 TeV is studied with the LHCb detector at the LHC. The differential cross-section for prompt J/psi production is measured as a function of the J/psi transverse momentum p(T) and rapidity y in the fiducial region p(T) is an element of [0; 14] GeV/c and y is an element of [2.0; 4.5]. The differential cross-section and fraction of J/psi from b-hadron decays are also measured in the same p(T) and y ranges. The analysis is based on a data sample corresponding to an integrated luminosity of 5.2 pb(-1). The measured cross-sections integrated over the fiducial region are 10.52 +/- 0.04 +/- 1.40(-2.20)(+1.64) mu b for prompt J/psi production and 1.14 +/- 0.01 +/- 0.16 mu b for J/psi from b-hadron decays, where the first uncertainty is statistical and the second systematic. The prompt J/psi production cross-section is obtained assuming no J/psi polarisation and the third error indicates the acceptance uncertainty due to this assumption.

Journal ArticleDOI
TL;DR: In this paper, a search for events with jets and missing transverse energy is performed in a data sample of pp collisions collected at 7 TeV by the CMS experiment at the LHC.
Abstract: A search for events with jets and missing transverse energy is performed in a data sample of pp collisions collected at sqrt(s) = 7 TeV by the CMS experiment at the LHC. The analyzed data sample corresponds to an integrated luminosity of 1.14 inverse femtobarns. In this search, a kinematic variable, alphaT, is used as the main discriminator between events with genuine and misreconstructed missing transverse energy. No excess of events over the standard model expectation is found. Exclusion limits in the parameter space of the constrained minimal supersymmetric extension of the standard model are set. In this model, squark masses below 1.1 TeV are excluded at 95% CL. Gluino masses below 1.1 TeV are also ruled out at 95% CL for values of the universal scalar mass parameter below 500 GeV.

Journal ArticleDOI
TL;DR: A review of microwave assisted extraction of plant secondary metabolites, such as quinones, phenylpropanoids, terpenoids and alkaloids, can be found in this article.
Abstract: Plant secondary metabolites are known to be an important source of foods, fragrances, pigment, drugs and so on. Extraction is one of the crucial steps for research and development of plant secondary metabolites. Over the past 25 years, a large number of manuscripts of microwave assisted extraction have been published and lots of remarkable results have been achieved. However, there are still many theoretical and technical barriers in the area of microwave assisted extraction of plant secondary metabolites, which need to be overcome. This paper reviews recent advances in microwave assisted extraction of plant secondary metabolites, such as flavonoids, quinones, phenylpropanoids, terpenoids and alkaloids. Principles and mechanisms, apparatuses and equipment, advantages and disadvantages of microwave assisted extraction are also summarized. The last part of the paper introduces new and emerging technologies of microwave technique, and then suggests strategies for further research into microwave assisted extraction of plant secondary metabolites.

Journal ArticleDOI
TL;DR: In this article, in situ and satellite data shows evidence of different regional snow cover responses to the widespread warming and increasing winter precipitation that has characterized the Arctic climate for the past 40-50 years.
Abstract: Analysis of in situ and satellite data shows evidence of different regional snow cover responses to the widespread warming and increasing winter precipitation that has characterized the Arctic climate for the past 40–50 years. The largest and most rapid decreases in snow water equivalent (SWE) and snow cover duration (SCD) are observed over maritime regions of the Arctic with the highest precipitation amounts. There is also evidence of marked differences in the response of snow cover between the North American and Eurasian sectors of the Arctic, with the North American sector exhibiting decreases in snow cover and snow depth over the entire period of available in situ observations from around 1950, while widespread decreases in snow cover are not apparent over Eurasia until after around 1980. However, snow depths are increasing in many regions of Eurasia. Warming and more frequent winter thaws are contributing to changes in snow pack structure with important implications for land use and provision of ecosystem services. Projected changes in snow cover from Global Climate Models for the 2050 period indicate increases in maximum SWE of up to 15% over much of the Arctic, with the largest increases (15–30%) over the Siberian sector. In contrast, SCD is projected to decrease by about 10–20% over much of the Arctic, with the smallest decreases over Siberia (<10%) and the largest decreases over Alaska and northern Scandinavia (30–40%) by 2050. These projected changes will have far-reaching consequences for the climate system, human activities, hydrology, and ecology.

Journal ArticleDOI
28 Mar 2011-Analyst
TL;DR: To what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications?
Abstract: In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.