scispace - formally typeset
Search or ask a question
Institution

National Physical Laboratory

FacilityLondon, United Kingdom
About: National Physical Laboratory is a facility organization based out in London, United Kingdom. It is known for research contribution in the topics: Dielectric & Thin film. The organization has 7615 authors who have published 13327 publications receiving 319381 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The supercapacitive properties of nickel(II) tetraaminophthalocyanine (NiTAPc)/multi-walled carbon nanotube (MWCNT) nanocomposite films have been interrogated for the first time and found to possess a maximum specific capacitance of 981 ± 57 F g−1 (200 ± 12 mF cm−2).
Abstract: The supercapacitive properties of nickel(II) tetraaminophthalocyanine (NiTAPc)/multi-walled carbon nanotube (MWCNT) nanocomposite films have been interrogated for the first time and found to possess a maximum specific capacitance of 981 ± 57 F g−1 (200 ± 12 mF cm−2), a maximum power density of 700 ± 1 Wkg−1, a maximum specific energy of 134 ± 8 Wh kg−1 and excellent stability of over 1500 charge-discharge continuous cycling. Impedimetric study proves that most of the stored energy of the MWCNT-NiTAPc nanocomposite can be accessible at high frequency (720 Hz). When compared to MWCNTs modified with unsubstituted nickel(II) phthalocyanine (MWCNT-NiPc) or nickel(II) tetra-tert-butylphthalocyanine (MWCNT-tBuNiPc), MWCNT-NiTAPc exhibited superior supercapacitive behaviour, possibly due to the influence of nitrogen-containing groups on the phthalocyanine rings.

151 citations

Journal ArticleDOI
TL;DR: It is found that a 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole crystal possesses a negative birefringence at the low-frequency limit Δn(0) which is equal to about -0.182 (-0.192) and at λ = 1064 nm for the non-optimized structure (optimized one), respectively.
Abstract: As a starting point for our calculation of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole we used the XRD data obtained by C. Liu, Z. Wang, H. Xiao, Y. Lan, X. Li, S. Wang, Jie Tang, Z. Chen, J. Chem. Crystallogr., 2009 39 881. The structure was optimized by minimization of the forces acting on the atoms keeping the lattice parameters fixed with the experimental values. Using the relaxed geometry we have performed a comprehensive theoretical investigation of dispersion of the linear and nonlinear optical susceptibilities of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole using the full potential linear augmented plane wave method. The local density approximation by Ceperley–Alder (CA) exchange–correlation potential was applied. The full potential calculations show that this material possesses a direct energy gap of 3.4 eV for the original experimental structure and 3.2 eV for the optimized structure. We have calculated the complex’s dielectric susceptibility e(ω) dispersion, its zero-frequency limit e1(0) and the birefringence. We find that a 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole crystal possesses a negative birefringence at the low-frequency limit Δn(0) which is equal to about −0.182 (−0.192) and at λ = 1064 nm is −0.193 (−0.21) for the non-optimized structure (optimized one), respectively. We also report calculations of the complex second-order optical susceptibility dispersions for the principal tensor components: χ(2)123(ω), χ(2)231(ω) and χ(2)312(ω). The intra- and inter-band contributions to these susceptibilities are evaluated. The calculated total second order susceptibility tensor components at the low-frequency limit |χ(2)ijk(0)| and |χ(2)ijk(ω)| at λ = 1064 nm for all the three tensor components are evaluated. We established that the calculated microscopic second order hyperpolarizability, βijk, the vector component along the dipole moment direction, at the low-frequency limit and at λ = 1064 nm, for the dominant component |χ(2)123(ω)| is 4.99 × 10−30 esu (3.4 × 10−30 esu) and 7.72 × 10−30 esu (5.1 × 10−30 esu), respectively for the non-optimized structure (optimized structure).

151 citations

Journal ArticleDOI
TL;DR: In this article, an analysis is presented of published sets of pure element sputtering yields with the objective of predicting data for elements for which measurements are not available, and it is shown that these data sets each correlate with Sigmund's target dependence predictions with a scatter of 20%.

151 citations

Journal ArticleDOI
TL;DR: In this article, a more substantial range of data for alloys of this type is presented and it is concluded that ductility in creep is the most significant parameter correlating differences in rates of strain-accumulation in the tertiary stage: thus, the lower the ductility the greater the rate of strain accumulation.

151 citations

Journal ArticleDOI
TL;DR: In this paper, a 4-sublattice model was used to model stable and metastable fcc-based ordered phases (L12 Fe3Ni, L10 FeNi and L12 FeNi3) in the framework of the compound energy formalism.

150 citations


Authors

Showing all 7655 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Akhilesh Pandey10052953741
A. S. Bell9030561177
David R. Clarke9055336039
Praveen Kumar88133935718
Richard C. Thompson8738045702
Xin-She Yang8544461136
Andrew J. Pollard7967326295
Krishnendu Chakrabarty7999627583
Vinod Kumar7781526882
Bansi D. Malhotra7537519419
Matthew Hall7582724352
Sanjay K. Srivastava7336615587
Michael Jones7233118889
Sanjay Singh71113322099
Network Information
Related Institutions (5)
National Institute of Standards and Technology
60.6K papers, 2.2M citations

90% related

National Research Council
76K papers, 2.4M citations

89% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

88% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Argonne National Laboratory
64.3K papers, 2.4M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202242
2021356
2020438
2019434
2018406