scispace - formally typeset
Search or ask a question
Institution

National Physical Laboratory

FacilityLondon, United Kingdom
About: National Physical Laboratory is a facility organization based out in London, United Kingdom. It is known for research contribution in the topics: Dielectric & Thin film. The organization has 7615 authors who have published 13327 publications receiving 319381 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The excellent performance of biosensor is attributed to large surface-to-volume ratio and good electrochemical activity of graphene oxide, and good biocompatibility of chitosan, which enhances the DNA immobilization and facilitate electron transfer between DNA and electrode surface (ITO).
Abstract: Graphene oxide (GO)-Chitosan (CHI) nano-composite is employed for the development of DNA based electrochemical biosensor for diagnosis of typhoid. Biosensor has been prepared by covalent immobilization of Salmonella typhi specific 5′-amine labeled single stranded (ss) DNA probe on GO-CHI/ITO via glutaraldehyde. Differential pulse voltammetry (DPV) studies revealed good specificity and ability of ssDNA/GO-CHI/ITO biosensor to distinguish complementary, non-complementary and one base mismatch sequences. The ssDNA/GO-CHI/ITO biosensor showed detection range of 10 fM to 50 nM and LOD 10 fM within 60 s hybridization times for complementary sequence. Further, ssDNA/GO-CHI/ITO bioelectrode is able to detect complementary target present in serum samples with LOD of 100 fM at 25 °C. The excellent performance of biosensor is attributed to large surface-to-volume ratio and good electrochemical activity of graphene oxide, and good biocompatibility of chitosan, which enhances the DNA immobilization and facilitate electron transfer between DNA and electrode surface (ITO).

185 citations

Journal ArticleDOI
TL;DR: The environmentally sustainable route of production of graphene ink suitable for screen-printing technology is reported, and the use of non-toxic solvent Dihydrolevoglucosenone (Cyrene) significantly speeds up and reduces the cost of the liquid phase exfoliation of graphite.
Abstract: Printed electronics offer a breakthrough in the penetration of information technology into everyday life. The possibility of printing electronic circuits will further promote the spread of the Internet of Things applications. Inks based on graphene have a chance to dominate this technology, as they potentially can be low cost and applied directly on materials like textile and paper. Here we report the environmentally sustainable route of production of graphene ink suitable for screen-printing technology. The use of non-toxic solvent Dihydrolevoglucosenone (Cyrene) significantly speeds up and reduces the cost of the liquid phase exfoliation of graphite. Printing with our ink results in very high conductivity (7.13 × 104 S m−1) devices, which allows us to produce wireless connectivity antenna operational from MHz to tens of GHz, which can be used for wireless data communication and energy harvesting, which brings us very close to the ubiquitous use of printed graphene technology for such applications. Printed conductive inks show promise for future electronic device applications. Here, the authors report synthesis of graphene inks with conductivity of 7.13 × 10^4 S/m by Cyrene assisted liquid phase exfoliation, and their applications in data communication and RF energy harvesting.

184 citations

Journal ArticleDOI
TL;DR: A protocol for use at the host-host level of computer networks is presented and assertions which reflect important characteristics of the protocol are derived and verified, for a demonstration that cyclic sequence numbers could be used in the protocol without ambiguity.

184 citations

Journal ArticleDOI
TL;DR: The state-of-the-art in the more well-known large-scale dimensional metrology methods are described in detail in this paper, where relevant specialist review papers exist, these are cited as further reading.
Abstract: With ever-more demanding requirements for the accurate manufacture of large components, dimensional measuring techniques are becoming progressively more sophisticated. This review describes some of the more recently developed techniques and the state-of-the-art in the more well-known large-scale dimensional metrology methods. In some cases, the techniques are described in detail, or, where relevant specialist review papers exist, these are cited as further reading. The traceability of the measurement data collected is discussed with reference to new international standards that are emerging. In some cases, hybrid measurement techniques are finding specialized applications and these are referred to where appropriate. © IMechE 2009.

182 citations


Authors

Showing all 7655 results

NameH-indexPapersCitations
Rajesh Kumar1494439140830
Akhilesh Pandey10052953741
A. S. Bell9030561177
David R. Clarke9055336039
Praveen Kumar88133935718
Richard C. Thompson8738045702
Xin-She Yang8544461136
Andrew J. Pollard7967326295
Krishnendu Chakrabarty7999627583
Vinod Kumar7781526882
Bansi D. Malhotra7537519419
Matthew Hall7582724352
Sanjay K. Srivastava7336615587
Michael Jones7233118889
Sanjay Singh71113322099
Network Information
Related Institutions (5)
National Institute of Standards and Technology
60.6K papers, 2.2M citations

90% related

National Research Council
76K papers, 2.4M citations

89% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

88% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

87% related

Argonne National Laboratory
64.3K papers, 2.4M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202242
2021356
2020438
2019434
2018406