scispace - formally typeset
Search or ask a question
Institution

Paul Scherrer Institute

FacilityVilligen, Switzerland
About: Paul Scherrer Institute is a facility organization based out in Villigen, Switzerland. It is known for research contribution in the topics: Neutron & Large Hadron Collider. The organization has 9248 authors who have published 23984 publications receiving 890129 citations. The organization is also known as: PSI.


Papers
More filters
Journal ArticleDOI
TL;DR: The radio view of the atmospheres of non-degenerate stars, focusing on energy release physics in cool coronal stars, wind phenomenology in hot stars and cool giants, and emission observed from young and forming stars, is summarized in this article.
Abstract: Radio astronomy has provided evidence for the presence of ionized atmospheres around almost all classes of non-degenerate stars. Magnetically confined coronae dominate in the cool half of the Hertzsprung-Russell diagram. Their radio emission is predominantly of non-thermal origin and has been identified as gyrosynchrotron radiation from mildly relativistic electrons, apart from some coherent emission mechanisms. Ionized winds are found in hot stars and in red giants. They are detected through their thermal, optically thick radiation, but synchrotron emission has been found in many systems as well. The latter is emitted presumably by shock-accelerated electrons in weak magnetic fields in the outer wind regions. Radio emission is also frequently detected in pre-main sequence stars and protostars, and has recently been discovered in brown dwarfs. This review summarizes the radio view of the atmospheres of non-degenerate stars, focusing on energy release physics in cool coronal stars, wind phenomenology in hot stars and cool giants, and emission observed from young and forming stars.

282 citations

Journal ArticleDOI
18 Nov 2020-Nature
TL;DR: The results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration, and it may be more effective to control specific sources of particulates matter rather than overall particulate mass.
Abstract: Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1–3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5–8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass. Observations and air-quality modelling reveal that the sources of particulate matter and oxidative potential in Europe are different, implying that reducing mass concentrations of particulate matter alone may not reduce oxidative potential.

282 citations

Journal ArticleDOI
TL;DR: Concepts and technical realization of the high-resolution soft X-ray beamline ADRESS at the Swiss Light Source as well as diagnostics tools and alignment strategies are described.
Abstract: The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given.

281 citations

Journal ArticleDOI
TL;DR: This work applies the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement to demonstrate the ground state of the nearest-neighbor Heisenberg model is a gapless spin liquid.
Abstract: The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S=1/2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.

280 citations

Journal ArticleDOI
22 Dec 2000-Science
TL;DR: The observation of intersubband electroluminescence from a p-type silicon/silicon-germanium quantum cascade structure is reported, and the nonradiative lifetime is found to depend strongly on the design of the quantum well structure, and is shown to reach values comparable to that of an equivalent GaInAs/AlInAs laser structure.
Abstract: The quantum cascade laser, which uses electronic transitions within a single band of a semiconductor, constitutes a possible way to integrate active optical components into silicon-based technology. This concept necessitates a transition with a narrow linewidth and an upper state with a sufficiently long lifetime. We report the observation of intersubband electroluminescence from a p-type silicon/silicon-germanium quantum cascade structure, centered at 130 millielectron volts with a width of 22 millielectron volts, with the expected polarization, and discernible up to 180 kelvin. The nonradiative lifetime is found to depend strongly on the design of the quantum well structure, and is shown to reach values comparable to that of an equivalent GaInAs/AlInAs laser structure.

280 citations


Authors

Showing all 9348 results

NameH-indexPapersCitations
Andrea Bocci1722402176461
Tobin J. Marks1591621111604
Wolfgang Wagner1562342123391
David D'Enterria1501592116210
Andreas Pfeiffer1491756131080
Christoph Grab1441359144174
Maurizio Pierini1431782104406
Alexander Belyaev1421895100796
Ajit Kumar Mohanty141112493062
Felicitas Pauss1411623104493
Chiara Mariotti141142698157
Luc Pape1411441130253
Rainer Wallny1411661105387
Roland Horisberger1391471100458
Emmanuelle Perez138155099016
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

93% related

Argonne National Laboratory
64.3K papers, 2.4M citations

93% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

93% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202363
2022199
20211,299
20201,442
20191,330
20181,298