scispace - formally typeset
Search or ask a question
Institution

Paul Scherrer Institute

FacilityVilligen, Switzerland
About: Paul Scherrer Institute is a facility organization based out in Villigen, Switzerland. It is known for research contribution in the topics: Neutron & Large Hadron Collider. The organization has 9248 authors who have published 23984 publications receiving 890129 citations. The organization is also known as: PSI.


Papers
More filters
Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations

Journal ArticleDOI
TL;DR: A detailed discussion of the strengths and limitations of the AMS measurement approach is presented and how the measurements are used to characterize particle properties are reviewed to highlight the different applications of this instrument.
Abstract: The application of mass spectrometric techniques to the realtime measurement and characterization of aerosols represents a significant advance in the field of atmospheric science. This review focuses on the aerosol mass spectrometer (AMS), an instrument designed and developed at Aerodyne Research, Inc. (ARI) that is the most widely used thermal vaporization AMS. The AMS uses aerodynamic lens inlet technology together with thermal vaporization and electron-impact mass spectrometry to measure the real-time non-refractory (NR) chemical speciation and mass loading as a function of particle size of fine aerosol particles with aerodynamic diameters between similar to 50 and 1,000 nm. The original AMS utilizes a quadrupole mass spectrometer (Q) with electron impact (EI) ionization and produces ensemble average data of particle properties. Later versions employ time-of-flight (ToF) mass spectrometers and can produce full mass spectral data for single particles. This manuscript presents a detailed discussion of the strengths and limitations of the AMS measurement approach and reviews how the measurements are used to characterize particle properties. Results from selected laboratory experiments and field measurement campaigns are also presented to highlight the different applications of this instrument. Recent instrumental developments, such as the incorporation of softer ionization techniques (vacuum ultraviolet (VUV) photo-ionization, Li(+) ion, and electron attachment) and high-resolution ToF mass spectrometers, that yield more detailed information about the organic aerosol component are also described. (c) 2007 Wiley Periodicals, Inc.

1,545 citations

Journal Article
D. E. Groom1, M. Aguilar-Benitez, Claude Amsler2, R. M. Barnett1, Patricia R. Burchat3, C. D. Carone4, C. Caso5, G. Conforto6, O. I. Dahl1, Michael Doser7, Semen Eidelman8, Jonathan L. Feng, L. K. Gibbons9, Maury Goodman10, Christoph Grab11, Atul Gurtu12, K. Hagiwara, K. G. Hayes13, J. J. Hernandez14, Ken Ichi Hikasa15, K. Honscheid16, Christopher Kolda1, Michelangelo L. Mangano7, Aneesh V. Manohar17, A. Masoni, Klaus Mönig, Hitoshi Murayama18, Hitoshi Murayama1, Koji Nakamura, S. Sánchez Navas19, Keith A. Olive20, Luc Pape7, A. Piepke21, Matts Roos22, Masaharu Tanabashi15, Nils A. Tornqvist22, T. G. Trippe1, Petr Vogel23, C. G. Wohl1, Ron L. Workman24, W-M. Yao1, B. Armstrong1, J. L. Casas Serradilla7, B. B. Filimonov, P. S. Gee1, S. B. Lugovsky, F. Nicholson7, K. S. Babu, D. Z. Besson25, Otmar Biebel26, P. Bloch7, Robert N. Cahn1, Ariella Cattai7, R. S. Chivukula27, R. Cousins28, Thibault Damour29, K. Desler, R. J. Donahue1, D. A. Edwards, Jens Erler30, V. V. Ezhela, A. Fassò3, W. Fetscher11, Daniel Froidevaux7, Masataka Fukugita31, Thomas K. Gaisser32, L. A. Garren33, S. Geer33, H J Gerber11, Frederick J. Gilman34, Howard E. Haber35, C. A. Hagmann36, Ian Hinchliffe1, Craig J. Hogan37, G. Höhler38, P. Igo-Kemenes39, John David Jackson1, Kurtis F Johnson40, D. Karlen41, Boris Kayser42, S. R. Klein1, Konrad Kleinknecht43, I.G. Knowles44, Edward W. Kolb33, Edward W. Kolb45, P. Kreitz3, R. Landua7, Paul Langacker30, L. S. Littenberg46, David Manley47, John March-Russell, T. Nakada48, Helen R. Quinn3, Georg G. Raffelt49, B. Renk43, L. Rolandi7, Michael T Ronan1, L.J. Rosenberg50, H. F.W. Sadrozinski35, A. I. Sanda51, Michael Schmitt52 
TL;DR: In this article, a biennial review summarizes much of particle physics using data from previous editions., plus 2778 new measurements from 645 papers, including measurements of gauge bosons, leptons, quarks, mesons, and baryons.
Abstract: This biennial Review summarizes much of particle physics. Using data from previous editions., plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors., probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on CKM quark-mixing matrix, V-ud & V-us, V-cb & V-ub, top quark, muon anomalous magnetic moment, extra dimensions, particle detectors, cosmic background radiation, dark matter, cosmological parameters, and big bang cosmology.

1,520 citations

Journal ArticleDOI
TL;DR: The goal of the present article is to provide a survey of electroactive polymers in view of potential applications in rechargeable batteries, and reviews the preparative methods and the electrochemical performance of polymers as rechargeable battery electrodes.
Abstract: Electrochemical energy storage systems (batteries) have a tremendous role in technical applications In this review the authors examine the prospects of electroactive polymers in view of the properties required for such batteries Conducting organic polymers are considered here in the light of their rugged chemical environment: organic solvents, acids, and alkalis The goal of the present article is to provide, first of all in tabular form, a survey of electroactive polymers in view of potential applications in rechargeable batteries It reviews the preparative methods and the electrochemical performance of polymers as rechargeable battery electrodes The theoretical values of specific charge of the polymers are comparable to those of metal oxide electrodes, but are not as high as those of most of the metal electrodes normally used in batteries Therefore, it is an advantage in conventional battery designs to use the conducting polymer as a positive electrode material in combination with a negative electrode such as Li, Na, Mg, Zn, MeH{sub x}, etc 504 refs

1,481 citations

Journal ArticleDOI
Wolfgang Ackermann1, G. Asova, Valeri Ayvazyan2, A. Azima2  +154 moreInstitutions (16)
TL;DR: In this paper, the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured.
Abstract: We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 J for individual pulses, and the average energy per pulse reached 70 J. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

1,390 citations


Authors

Showing all 9348 results

NameH-indexPapersCitations
Andrea Bocci1722402176461
Tobin J. Marks1591621111604
Wolfgang Wagner1562342123391
David D'Enterria1501592116210
Andreas Pfeiffer1491756131080
Christoph Grab1441359144174
Maurizio Pierini1431782104406
Alexander Belyaev1421895100796
Ajit Kumar Mohanty141112493062
Felicitas Pauss1411623104493
Chiara Mariotti141142698157
Luc Pape1411441130253
Rainer Wallny1411661105387
Roland Horisberger1391471100458
Emmanuelle Perez138155099016
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

93% related

Argonne National Laboratory
64.3K papers, 2.4M citations

93% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

93% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202363
2022199
20211,299
20201,442
20191,330
20181,298