scispace - formally typeset
Search or ask a question
Institution

Paul Scherrer Institute

FacilityVilligen, Switzerland
About: Paul Scherrer Institute is a facility organization based out in Villigen, Switzerland. It is known for research contribution in the topics: Neutron & Large Hadron Collider. The organization has 9248 authors who have published 23984 publications receiving 890129 citations. The organization is also known as: PSI.


Papers
More filters
Journal ArticleDOI
TL;DR: A fundamental understanding of the operando OER mechanism for highly active perovskite catalysts is provided, which significantly differs from design principles based on ex situ characterization techniques.
Abstract: The growing need to store increasing amounts of renewable energy has recently triggered substantial R&D efforts towards efficient and stable water electrolysis technologies. The oxygen evolution reaction (OER) occurring at the electrolyser anode is central to the development of a clean, reliable and emission-free hydrogen economy. The development of robust and highly active anode materials for OER is therefore a great challenge and has been the main focus of research. Among potential candidates, perovskites have emerged as promising OER electrocatalysts. In this study, by combining a scalable cutting-edge synthesis method with time-resolved X-ray absorption spectroscopy measurements, we were able to capture the dynamic local electronic and geometric structure during realistic operando conditions for highly active OER perovskite nanocatalysts. Ba0.5Sr0.5Co0.8Fe0.2O3-δ as nano-powder displays unique features that allow a dynamic self-reconstruction of the material's surface during OER, that is, the growth of a self-assembled metal oxy(hydroxide) active layer. Therefore, besides showing outstanding performance at both the laboratory and industrial scale, we provide a fundamental understanding of the operando OER mechanism for highly active perovskite catalysts. This understanding significantly differs from design principles based on ex situ characterization techniques.

601 citations

Journal ArticleDOI
TL;DR: Numerically and experimentally a novel mechanism of deterministic magnetization reversal in a ferrimagnet driven by an ultrafast heating of the medium resulting from the absorption of a sub-picosecond laser pulse without the presence of a magnetic field is shown.
Abstract: The question of how, and how fast, magnetization can be reversed is a topic of great practical interest for the manipulation and storage of magnetic information. It is generally accepted that magnetization reversal should be driven by a stimulus represented by time-non-invariant vectors such as a magnetic field, spin-polarized electric current, or cross-product of two oscillating electric fields. However, until now it has been generally assumed that heating alone, not represented as a vector at all, cannot result in a deterministic reversal of magnetization, although it may assist this process. Here we show numerically and demonstrate experimentally a novel mechanism of deterministic magnetization reversal in a ferrimagnet driven by an ultrafast heating of the medium resulting from the absorption of a sub-picosecond laser pulse without the presence of a magnetic field.

600 citations

Journal ArticleDOI
TL;DR: The data collected by the MEG experiment at the Paul Scherrer Institut show no excess of events compared to background expectations and yield a new upper limit on the branching ratio of this decay of 5.7 × 10(-13) (90% confidence level).
Abstract: The analysis of a combined data set, totaling $3.6\ifmmode\times\else\texttimes\fi{}{10}^{14}$ stopped muons on target, in the search for the lepton flavor violating decay ${\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}\ensuremath{\gamma}$ is presented. The data collected by the MEG experiment at the Paul Scherrer Institut show no excess of events compared to background expectations and yield a new upper limit on the branching ratio of this decay of $5.7\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}13}$ (90% confidence level). This represents a four times more stringent limit than the previous world best limit set by MEG.

599 citations

Journal ArticleDOI
TL;DR: A linear regression model of the carbonaceous particulate mass in the submicrometer size range CM(PM1) as a function of aerosol light absorption properties measured by the aethalometer is introduced, and results indicate that light absorption exponents of 1.8-1.9 for wood burning calculated from the light absorption at 470 and 950 nanometers should be used to obtain agreement of the two methods regarding the relative wood burning and traffic emission contributions.
Abstract: A source apportionment study was performed for particulate matter in the small village of Roveredo, Switzerland, where more than 70% of the households use wood burning for heating purposes. A two-lane trans-Alpine highway passes through the village and contributes to the total aerosol burden in the area. The village is located in a steep Alpine valley characterized by strong and persistent temperature inversions during winter, especially from December to February. During two winter and one early spring campaigns, a seven-wavelength aethalometer, high volume (HIVOL) samplers, an Aerodyne quadrupole aerosol mass spectrometer (AMS), an optical particle counter (OPC), and a Sunset Laboratory OCEC analyzer were deployed to study the contribution of wood burning and traffic aerosols to particulate matter. A linear regression model of the carbonaceous particulate mass in the submicrometer size range CM(PM1) as a function of aerosol light absorption properties measured by the aethalometer is introduced to estimate the particulate mass from wood burning and traffic (PM(wb), PM(traffic)). This model was calibrated with analyses from the 14C method using HIVOL filter measurements. These results indicate that light absorption exponents of 1.1 for traffic and 1.8-1.9 for wood burning calculated from the light absorption at 470 and 950 nanometers should be used to obtain agreement of the two methods regarding the relative wood burning and traffic emission contributions to CM(PM1) and also to black carbon. The resulting PM(wb) and PM(traffic) values explain 86% of the variance of the CM(PM1) and contribute, on average, 88 and 12% to CM(PM1), respectively. The black carbon is estimated to be 51% due to wood burning and 49% due to traffic emissions. The average organic carbon/total carbon (OC/TC) values were estimated to be 0.52 for traffic and 0.88 for wood burning particulate emissions.

590 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented new methods for the evaluation of one-loop tensor integrals, which have been used in the calculation of the complete electroweak oneloop corrections to e + e − → 4 fermions.

590 citations


Authors

Showing all 9348 results

NameH-indexPapersCitations
Andrea Bocci1722402176461
Tobin J. Marks1591621111604
Wolfgang Wagner1562342123391
David D'Enterria1501592116210
Andreas Pfeiffer1491756131080
Christoph Grab1441359144174
Maurizio Pierini1431782104406
Alexander Belyaev1421895100796
Ajit Kumar Mohanty141112493062
Felicitas Pauss1411623104493
Chiara Mariotti141142698157
Luc Pape1411441130253
Rainer Wallny1411661105387
Roland Horisberger1391471100458
Emmanuelle Perez138155099016
Network Information
Related Institutions (5)
Los Alamos National Laboratory
74.6K papers, 2.9M citations

93% related

Argonne National Laboratory
64.3K papers, 2.4M citations

93% related

Lawrence Berkeley National Laboratory
66.5K papers, 4.1M citations

93% related

Oak Ridge National Laboratory
73.7K papers, 2.6M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202363
2022199
20211,299
20201,442
20191,330
20181,298