scispace - formally typeset
Search or ask a question
Institution

Solid State Physics Laboratory

FacilityDelhi, India
About: Solid State Physics Laboratory is a facility organization based out in Delhi, India. It is known for research contribution in the topics: Quantum dot & Dielectric. The organization has 1754 authors who have published 2597 publications receiving 50601 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors investigated the thermostimulated creep of two series of amorphous polyolefins, (CH 2 ) m C (CH 3 ) 2 and ( CH 2 )m C ( CH 3 )( CH 2 CH 3 ), where m = 1, 2 and 3, was investigated from 77 to 350 K.

52 citations

Journal ArticleDOI
TL;DR: In this paper, a square lattice unit cell of 2'×'2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique is presented.
Abstract: The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems makes them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2 × 2 quantum dots defined electrostatically in an AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range of 0–40 μeV. Finally, we demonstrate fast (∼1 μs) single-shot readout of the spin state of electrons in the dots through ...

52 citations

Journal ArticleDOI
TL;DR: Nanoceria is a potent candidate in free radical scavenging as well as sensing because of its unique redox properties, which have been exploited, in the reported work, to sense and quantify peroxide levels.
Abstract: Oxidative stress is a condition when the concentration of free radicals and reactive molecular species rise above certain level in living systems. This condition not only perturbs the normal physiology of the system but also has been implicated in many diseases in humans and other animals. Hydrogen peroxide (H2O2) is known to be involved in induction of oxidative stress and has also been linked to a variety of ailments such as inflammation, rheumatoid arthritis, diabetes, and cancer in humans. It is one of the more stable reactive molecular species present in living systems. Because of its stability and links with various diseases, sensing the level of H2O2 can be of great help in diagnosing these diseases, thereby easing disease management and amelioration. Nanoceria is a potent candidate in free radical scavenging as well as sensing because of its unique redox properties. These properties have been exploited, in the reported work, to sense and quantify peroxide levels. Nanoceria has been synthesized using different capping agents: Hexamethylene-tetra-amine (HMTA) and fructose. CeO2-HMTA show rhombohedral and cubic 6.4 nm particles whereas CeO2-fructose are found to be spherical with average particle diameter size 5.8 nm. CeO2-HMTA, due to the better exposure of the active (200) and (220) planes relative to (111) plane, exhibits superior electrocatalytic activity toward H2O2 reduction. Amperometric responses were measured by increasing H2O2 concentration. The authors observed a sensitivity of 21.13 and 9.6 μA cm−2 mM−1 for CeO2-HMTA and CeO2-fructose, respectively. The response time of 4.8 and 6.5 s was observed for CeO2-HMTA and CeO2-fructose, respectively. The limit of detection is as low as 0.6 and 2.0 μM at S/N ratio 3 for CeO2-HMTA and CeO2-fructose, respectively. Ceria-HMTA was further tested for its antioxidant activity in an animal cell line in vitro and the results confirmed its activity.

52 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated low-temperature electronic transport on InAs/GaSb double quantum wells, a system which promises to be electrically tunable from a normal to a topological insulator.
Abstract: We have investigated low-temperature electronic transport on InAs/GaSb double quantum wells, a system which promises to be electrically tunable from a normal to a topological insulator. Hall bars of $50\phantom{\rule{0.28em}{0ex}}\ensuremath{\mu}\mathrm{m}$ in length down to a few micrometers gradually develop a pronounced resistance plateau near charge neutrality, which comes along with distinct nonlocal transport along the edges. Plateau resistances are found to be above or below the quantized value expected for helical edge channels. We discuss these results based on the interplay between imperfect edges and residual local bulk conductivity.

51 citations

Journal ArticleDOI
TL;DR: The effect of electron-phonon coupling in a graphene and an InAs nanowire double quantum dot is studied to reveal oscillations of the DQD current periodic in energy detuning between the two levels.
Abstract: Graphene and InAs nanowires are both promising materials for coherent spin manipulation, but coupling between a quantum system and its environment leads to decoherence. Here, the contribution of electron–phonon coupling to decoherence in graphene and InAs nanowire is studied.

51 citations


Authors

Showing all 1757 results

NameH-indexPapersCitations
Alain Dufresne11135845904
Yang Ren7988026341
Klaus Ensslin7063821385
Werner Wegscheider6993321984
Takashi Takahashi6542414234
Liu Hao Tjeng6432213752
Nicholas E. Geacintov6345315636
Manfred Sigrist6146818362
Thomas Ihn6147514159
Takafumi Sato5926311032
Christoph Stampfer5931514422
Christian Colliex5828914618
Takashi Mizokawa5740011697
Eberhard Bodenschatz5737413208
Bertram Batlogg551909459
Network Information
Related Institutions (5)
National Institute for Materials Science
29.2K papers, 880.9K citations

86% related

Indian Institute of Technology Madras
36.4K papers, 590.4K citations

84% related

Forschungszentrum Jülich
35.6K papers, 994.1K citations

84% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

83% related

Tata Institute of Fundamental Research
21.7K papers, 622.3K citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
202210
202174
202087
201992
201878