scispace - formally typeset
Search or ask a question
Institution

University of Lisbon

EducationLisbon, Lisboa, Portugal
About: University of Lisbon is a education organization based out in Lisbon, Lisboa, Portugal. It is known for research contribution in the topics: Population & Context (language use). The organization has 19122 authors who have published 48503 publications receiving 1102623 citations. The organization is also known as: Universidade de Lisboa & Lisbon University.


Papers
More filters
Journal ArticleDOI
TL;DR: The multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.
Abstract: The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2 The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules Rate constants of 140 M−1 s−1 and ≥13 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment

675 citations

Journal ArticleDOI
TL;DR: This work reviews recent advances in data driven and theory driven Computational psychiatry, with an emphasis on clinical applications, and highlights the utility of combining them.
Abstract: Translating advances in neuroscience into benefits for patients with mental illness presents enormous challenges because it involves both the most complex organ, the brain, and its interaction with a similarly complex environment. Dealing with such complexities demands powerful techniques. Computational psychiatry combines multiple levels and types of computation with multiple types of data in an effort to improve understanding, prediction and treatment of mental illness. Computational psychiatry, broadly defined, encompasses two complementary approaches: data driven and theory driven. Data-driven approaches apply machine-learning methods to high-dimensional data to improve classification of disease, predict treatment outcomes or improve treatment selection. These approaches are generally agnostic as to the underlying mechanisms. Theory-driven approaches, in contrast, use models that instantiate prior knowledge of, or explicit hypotheses about, such mechanisms, possibly at multiple levels of analysis and abstraction. We review recent advances in both approaches, with an emphasis on clinical applications, and highlight the utility of combining them.

672 citations

Proceedings ArticleDOI
16 Aug 2013
TL;DR: This paper describes several threat vectors that may enable the exploit of SDN vulnerabilities and sketches the design of a secure and dependable SDN control platform as a materialization of the concept here advocated.
Abstract: Software-defined networking empowers network operators with more flexibility to program their networks. With SDN, network management moves from codifying functionality in terms of low-level device configurations to building software that facilitates network management and debugging. By separating the complexity of state distribution from network specification, SDN provides new ways to solve long-standing problems in networking --- routing, for instance --- while simultaneously allowing the use of security and dependability techniques, such as access control or multi-path.However, the security and dependability of the SDN itself is still an open issue. In this position paper we argue for the need to build secure and dependable SDNs by design. As a first step in this direction we describe several threat vectors that may enable the exploit of SDN vulnerabilities. We then sketch the design of a secure and dependable SDN control platform as a materialization of the concept here advocated. We hope that this paper will trigger discussions in the SDN community around these issues and serve as a catalyser to join efforts from the networking and security & dependability communities in the ultimate goal of building resilient control planes.

667 citations

Journal ArticleDOI
TL;DR: The mechanisms underlying the release of O 2 ⨪ from mitochondria into cytosol are elucidated, and the role of outer membrane voltage-dependent anion channels (VDACs) in this process is assessed, noting the importance of these processes for modulating cell signaling pathways in these compartments.

659 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed two fast distributed gradient algorithms based on the centralized Nesterov gradient algorithm and established their convergence rates in terms of the per-node communications and the pernode gradient evaluations.
Abstract: We study distributed optimization problems when N nodes minimize the sum of their individual costs subject to a common vector variable. The costs are convex, have Lipschitz continuous gradient (with constant L), and bounded gradient. We propose two fast distributed gradient algorithms based on the centralized Nesterov gradient algorithm and establish their convergence rates in terms of the per-node communications K and the per-node gradient evaluations k. Our first method, Distributed Nesterov Gradient, achieves rates O( logK/K) and O(logk/k). Our second method, Distributed Nesterov gradient with Consensus iterations, assumes at all nodes knowledge of L and μ(W) - the second largest singular value of the N ×N doubly stochastic weight matrix W. It achieves rates O( 1/ K2-ξ) and O( 1/k2) ( ξ > 0 arbitrarily small). Further, we give for both methods explicit dependence of the convergence constants on N and W. Simulation examples illustrate our findings.

649 citations


Authors

Showing all 19716 results

NameH-indexPapersCitations
Joao Seixas1531538115070
A. Gomes1501862113951
Marco Costa1461458105096
António Amorim136147796519
Osamu Jinnouchi13588586104
P. Verdier133111183862
Andy Haas132109687742
Wendy Taylor131125289457
Steve McMahon13087878763
Timothy Andeen129106977593
Heather Gray12996680970
Filipe Veloso12888775496
Nuno Filipe Castro12896076945
Oliver Stelzer-Chilton128114179154
Isabel Marian Trigger12897477594
Network Information
Related Institutions (5)
VU University Amsterdam
75.6K papers, 3.4M citations

91% related

University of Padua
114.8K papers, 3.6M citations

91% related

University of Bologna
115.1K papers, 3.4M citations

91% related

University of Groningen
69.1K papers, 2.9M citations

91% related

Utrecht University
139.3K papers, 6.2M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023247
2022828
20214,521
20204,517
20193,810
20183,617