scispace - formally typeset
Search or ask a question
Institution

Xuzhou Institute of Technology

EducationXuzhou, China
About: Xuzhou Institute of Technology is a education organization based out in Xuzhou, China. It is known for research contribution in the topics: Catalysis & Computer science. The organization has 1696 authors who have published 1521 publications receiving 13541 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the relation between the negativity and the relative entropy of entanglement in high-dimensional bipartite quantum systems has been investigated, and the analytic expressions for the negative and positive relations have been derived.
Abstract: The entanglement for a two-parameter class of states in a high-dimension (m ⊗ n, n⩾m⩾3) bipartite quantum System is discussed. The negativity (N) and the relative entropy of entanglement (Er) are calculated, and the analytic expressions are obtained. Finally the relation between the negativity and the relative entropy of entanglement is discussed. The result demonstrates that all PPT states of the two-parameter class of states are separable, and all entangled states are NPT states. Different from the 2 ⊗ n quantum System, the negativity for a two-parameter class of states in high dimension is not always greater than or equal to the relative entropy of entanglement. The more general relation expression is mN/2⩾Er.

12 citations

Journal ArticleDOI
Na Zhang1, Enqi Liu1, Hongwei Chen1, Jinhui Hou1, Chao Li1, Hongri Wan1 
TL;DR: In this article, a simple hydrothermal method coupled with calcination process was used to solve the problem of low capacity and volume expansion of LaCoO3, and the resulting perovskite composites exhibit excellent lithium storage performance as lithium ion batteries.

12 citations

Journal ArticleDOI
TL;DR: These findings demonstrate that B. bassiana regulates different genes to infect different insects, advancing knowledge of the molecular mechanisms of Beauveria-pest interactions.
Abstract: BACKGROUND Insect pests have evolved various defense mechanisms to combat fungal infection, and fungi have developed multiple strategies to overcome the immune defense responses of insects. However, transcriptomic analysis of fungal strategies for infecting different pests has not been reported. RESULTS Transcriptomic profiling of Beauveria bassiana was performed at 12, 24 and 48 h after infecting Galleria mellonella and Plutella xylostella, and 540, 847 and 932 differentially expressed genes were detected, respectively. Functional categorization showed that most of these genes are involved in the ribosome, nitrogen metabolism and oxidative phosphorylation pathways. Thirty-one differentially expressed virulence genes (including genes involved in adhesion, degradation, host colonization and killing, and secondary metabolism) were found, suggesting that different molecular mechanisms were used by the fungus during the infection of different pests, which was further confirmed by disrupting creA and fkh2. Virulence assay results showed that ΔcreA and Δfkh2 strains of B. bassiana had distinct fold changes in their 50% lethal time (LT50 ) values (compared with the control stains) during infection of G. mellonella (ΔcreA: 1.38-fold > Δfkh2: 1.18-fold) and P. xylostella (ΔcreA: 1.44-fold < Δfkh2: 2.25-fold). creA was expressed at higher levels during the infection of G. mellonella compared with P. xylostella, whereas fkh2 showed the opposite expression pattern, demonstrating that creA and Fkh2 have different roles in B. bassiana during the infection of G. mellonella and P. xylostella. CONCLUSION These findings demonstrate that B. bassiana regulates different genes to infect different insects, advancing knowledge of the molecular mechanisms of Beauveria-pest interactions. © 2018 Society of Chemical Industry.

12 citations

Journal ArticleDOI
TL;DR: In this paper, a deep-eutectic solvent electrolysis was used to synthesize magnetic nanoparticles, which can be highly dispersed in water with neither surface post-modification nor organic stabilizers.
Abstract: Magnetic iron oxide nanoparticles have been proven to have versatile applications in biomedicine. Although numerous strategies have been developed to synthesize hydrophilic magnetic nanoparticles, there is still a challenge in the quantity and controllability of preparation of highly dispersible, stably water-dispersive magnetic nanoparticles. The current work presents a deep-eutectic solvent electrolysis to synthesize magnetic nanoparticles. In the electrolysis process, iron atoms at the anode electrode are oxidized to ferric ions, and then the ferric ions are combined with reactive oxygen species that derived from the decomposition of deep-eutectic solvents to form iron oxide nanocrystals. Concomitantly, hydrophilic radicals of amine groups produced by electrolyte decomposition are grafted on the particles. The monodisperse nanoparticle size ranged from 6 to 9 nm. The hydrophilic group loaded nanoparticles can be highly dispersed in water with neither surface post-modification nor organic stabilizers. The hydrodynamic particle diameter is between 20 and 30 nm. The transparent aqueous dispersions can be maintained for more than 600 days without precipitation.

12 citations

Journal ArticleDOI
TL;DR: In this article, the porosity of C60 high-strength concrete after 0, 30, 60, and 90 freeze-thaw cycles determined via the water retention method are 1.30, 3.65, 5.14, and 7.34%, respectively.
Abstract: In this study, the porosities of C60 high-strength concrete after 0, 30, 60, and 90 freeze-thaw cycles determined via the water retention method are 1.30%, 3.65%, 5.14%, and 7.34%, respectively. Furthermore, a mathematical model of porosity varying with the number of freeze-thaw cycles is established. Using an artificial environment simulation experimental system and the natural diffusion method, the chloride diffusion law of C60 high-strength concrete after 0, 30, 60, and 90 freeze-thaw cycles is obtained. The corresponding diffusion coefficients are calculated based on the experimental results and Fick’s law, where 0.3431 × 10−12, 0.5288 × 10−12, and 0.6712 × 10−12, and 0.8930 × 10−12 m2/s are obtained, respectively, and a mathematical model of diffusion coefficient with freeze-thawing is established. Transport control equations comprising solution flow and solute migration control equations are established for chloride ions in concrete after freeze-thawing cycles. The equations consider the effects of freeze-thawing, solution pressure, solution concentration, solution density, convection, mechanical dispersion, and chemisorption on chloride ion transport in concrete. Using COMSOL numerical software, the transport control equations for chloride ions are solved using a real concrete numerical model, and the chloride ion corrosion process in concrete after freeze-thaw cycles is simulated. The simulation results are consistent with the experimental values.

12 citations


Authors

Showing all 1711 results

NameH-indexPapersCitations
Peng Wang108167254529
Qiong Wu5131612933
Wenping Cao341764093
Bin Hu302133121
Syed Abdul Rehman Khan291312733
Jingui Duan29933807
Vivian C.H. Wu251052566
Lei Chen16991062
Chao Wang1674741
Wenbin Gong1627953
Jing Li16401025
Chao Liu1543737
Qinglin Wang1472595
Yaocheng Zhang1454566
Chao Wang1325774
Network Information
Related Institutions (5)
Shandong University of Science and Technology
16.3K papers, 187.1K citations

81% related

Wuhan University of Science and Technology
11.8K papers, 125.9K citations

80% related

Nanjing Normal University
20.2K papers, 325K citations

79% related

Chongqing University
57.8K papers, 784.6K citations

78% related

Yangzhou University
22K papers, 321K citations

78% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20237
202228
2021328
2020181
2019121
201873