scispace - formally typeset
Open AccessJournal ArticleDOI

Accounting for environmental flow requirements in global water assessments

TLDR
In this paper, five EF methods for calculating environmental flow requirements (EFRs) were compared with 11 case studies of locally assessed EFRs and the results showed that, on average, 37% of annual discharge was required to sustain environmental flow requirement.
Abstract
As the water requirement for food production and other human needs grows, quantification of environmental flow requirements (EFRs) is necessary to assess the amount of water needed to sustain freshwater ecosystems. EFRs are the result of the quantification of water necessary to sustain the riverine ecosystem, which is calculated from the mean of an environmental flow (EF) method. In this study, five EF methods for calculating EFRs were compared with 11 case studies of locally assessed EFRs. We used three existing methods (Smakhtin, Tennant, and Tessmann) and two newly developed methods (the variable monthly flow method (VMF) and the Q90_Q50 method). All methods were compared globally and validated at local scales while mimicking the natural flow regime. The VMF and the Tessmann methods use algorithms to classify the flow regime into high, intermediate, and low-flow months and they take into account intra-annual variability by allocating EFRs with a percentage of mean monthly flow (MMF). The Q90_Q50 method allocates annual flow quantiles (Q90 and Q50) depending on the flow season. The results showed that, on average, 37% of annual discharge was required to sustain environmental flow requirement. More water is needed for environmental flows during low-flow periods (46–71% of average low-flows) compared to high-flow periods (17–45% of average high-flows). Environmental flow requirements estimates from the Tennant, Q90_Q50, and Smakhtin methods were higher than the locally calculated EFRs for river systems with relatively stable flows and were lower than the locally calculated EFRs for rivers with variable flows. The VMF and Tessmann methods showed the highest correlation with the locally calculated EFRs (R2=0.91). The main difference between the Tessmann and VMF methods is that the Tessmann method allocates all water to EFRs in low-flow periods while the VMF method allocates 60% of the flow in low-flow periods. Thus, other water sectors such as irrigation can withdraw up to 40% of the flow during the low-flow season and freshwater ecosystems can still be kept in reasonable ecological condition. The global applicability of the five methods was tested using the global vegetation and the Lund-Potsdam-Jena managed land (LPJmL) hydrological model. The calculated global annual EFRs for fair ecological conditions represent between 25 and 46% of mean annual flow (MAF). Variable flow regimes, such as the Nile, have lower EFRs (ranging from 12 to 48% of MAF) than stable tropical regimes such as the Amazon (which has EFRs ranging from 30 to 67% of MAF).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems

TL;DR: Food in the Anthropocene : the EAT-Lancet Commission on healthy diets from sustainable food systems focuses on meat, fish, vegetables and fruit as sources of protein.
References
More filters
Journal ArticleDOI

River flow forecasting through conceptual models part I — A discussion of principles☆

TL;DR: In this article, the principles governing the application of the conceptual model technique to river flow forecasting are discussed and the necessity for a systematic approach to the development and testing of the model is explained and some preliminary ideas suggested.
Journal ArticleDOI

Freshwater biodiversity: importance, threats, status and conservation challenges

TL;DR: This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities and advocates continuing attempts to check species loss but urges adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods.
Journal ArticleDOI

Forecasting agriculturally driven global environmental change

TL;DR: Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 109 hectares of natural ecosystems would be converted to agriculture by 2050, accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems.
Journal ArticleDOI

A simple hydrologically based model of land surface water and energy fluxes for general circulation models

TL;DR: In this paper, a generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described.
Related Papers (5)
Trending Questions (1)
What are the different methods to calculate environmental flows?

The paper discusses five methods for calculating environmental flow requirements (EFRs): Smakhtin, Tennant, Tessmann, variable monthly flow (VMF), and Q90_Q50.