scispace - formally typeset
Open AccessJournal ArticleDOI

An overview of snow photochemistry: evidence, mechanisms and impacts

TLDR
In this paper, the authors consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future.
Abstract
It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3–4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively shallow boundary layer. Field and laboratory experiments have determined that the origin of the observed NOx flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which has been proposed to be either direct or indirect photo-oxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

Leu-M

Journal ArticleDOI

Atmospheric composition change – global and regional air quality

Paul S. Monks, +68 more
TL;DR: A review of the state of scientific understanding in relation to global and regional air quality is outlined in this article, in terms of emissions, processing and transport of trace gases and aerosols.
Journal ArticleDOI

Antarctic climate change and the environment

TL;DR: The Southern Hemisphere climate system varies on timescales from orbital, through millennial to sub-annual, and is closely coupled to other parts of the global climate system as discussed by the authors.
References
More filters
Book

Microphysics of Clouds and Precipitation

TL;DR: In this article, the authors focus on one major aspect of cloud microphysics, which involves the processes that lead to the formation of individual cloud and precipitation particles, and provide an account of the major characteristics of atmospheric aerosol particles.
Journal Article

Leu-M

Journal ArticleDOI

A Model for the Spectral Albedo of Snow. I: Pure Snow

TL;DR: In this article, the spectral albedo of snow is calculated at any wavelength in the solar spectrum and which accounts for diffusely or directly incident radiation at any zenith angle.
Related Papers (5)