scispace - formally typeset
Journal ArticleDOI

Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors

TLDR
The functionality of a distinct type of DNA binding domain is described and allows the design ofDNA binding domains for biotechnology.
Abstract
The pathogenicity of many bacteria depends on the injection of effector proteins via type III secretion into eukaryotic cells in order to manipulate cellular processes. TAL (transcription activator-like) effectors from plant pathogenic Xanthomonas are important virulence factors that act as transcriptional activators in the plant cell nucleus, where they directly bind to DNA via a central domain of tandem repeats. Here, we show how target DNA specificity of TAL effectors is encoded. Two hypervariable amino acid residues in each repeat recognize one base pair in the target DNA. Recognition sequences of TAL effectors were predicted and experimentally confirmed. The modular protein architecture enabled the construction of artificial effectors with new specificities. Our study describes the functionality of a distinct type of DNA binding domain and allows the design of DNA binding domains for biotechnology.

read more

Citations
More filters
Journal ArticleDOI

Ex vivo culture of the intestinal epithelium: strategies and applications

TL;DR: Novel genome-editing techniques have been successfully employed to functionally repair disease loci in cultured intestinal stem cells from human patients with a hereditary defect, and it is anticipated that this technology will be instrumental in exploiting the regenerative medicine potential of human intestine stem cells for treating human disorders in the intestinal tract and for creating near-physiological ex vivo models of human gastrointestinal disease.
Journal ArticleDOI

Engineering Plant Disease Resistance Based on TAL Effectors

TL;DR: This work has shown that novel synthetic DNA-binding domains for targeted genome manipulation based on a unique code encoded by plant-pathogenic bacteria and induce expression of plant host genes can be designed and used to predict binding sites of natural TAL effectors.
Journal ArticleDOI

Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9

TL;DR: The topics and information reviewed herein provide an outline of the groundbreaking research that is being performed, but also highlights the potential for progress yet to be made using these gene editing technologies.
Patent

Methods for engineering highly active t cell for immunotherapy

TL;DR: The authors used rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells.
References
More filters
Journal ArticleDOI

The plant immune system

TL;DR: A detailed understanding of plant immune function will underpin crop improvement for food, fibre and biofuels production and provide extraordinary insights into molecular recognition, cell biology and evolution across biological kingdoms.
Journal ArticleDOI

Activation Tagging Identifies a Conserved MYB Regulator of Phenylpropanoid Biosynthesis

TL;DR: A novel approach for enhancing the accumulation of natural products based on activation tagging by Agrobacterium-mediated transformation with a T-DNA that carries cauliflower mosaic virus 35S enhancer sequences at its right border is reported.
Journal ArticleDOI

Innate immunity in plants : an arms race between pattern recognition receptors in plants and effectors in microbial pathogens

TL;DR: It turns out that the important contribution of PTI to disease resistance is masked by pathogen virulence effectors that have evolved to suppress it.
Journal ArticleDOI

High-frequency modification of plant genes using engineered zinc-finger nucleases

TL;DR: High-frequency ZFN-stimulated gene targeting at endogenous plant genes, namely the tobacco acetolactate synthase genes (ALS SuRA and SuRB), for which specific mutations are known to confer resistance to imidazolinone and sulphonylurea herbicides are demonstrated.
Journal ArticleDOI

A bacterial effector acts as a plant transcription factor and induces a cell size regulator.

TL;DR: It is shown that AvrBs3 induces the expression of a master regulator of cell size, upa20, which encodes a transcription factor containing a basic helix-loop-helix domain that provokes developmental reprogramming of host cells by mimicking eukaryotic transcription factors.
Related Papers (5)