scispace - formally typeset
Open AccessJournal ArticleDOI

Observation and integrated Earth-system science: A roadmap for 2016–2025

TLDR
General developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation are covered.
About
This article is published in Advances in Space Research.The article was published on 2016-05-15 and is currently open access. It has received 40 citations till now. The article focuses on the topics: Earth system science & Earth observation.

read more

Citations
More filters
Journal Article

Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

TL;DR: In this article, the authors compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data.
Journal ArticleDOI

Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High‐Resolution Simulations

TL;DR: In this article, the authors proposed a framework to integrate global observations and high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties.
Journal ArticleDOI

CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System

TL;DR: The A-Train satellite constellation as mentioned in this paper is a 10-year demonstration of coordinated formation flying that made it possible to develop integrated products and that offered new insights into key atmospheric processes.
Journal ArticleDOI

Altimetry for the future: building on 25 years of progress

Saleh Abdalla, +360 more
TL;DR: In 2018, the 25th year of development of radar altimetry was celebrated and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences as discussed by the authors.
Journal ArticleDOI

Space-Based Observations for Understanding Changes in the Arctic-Boreal Zone

TL;DR: In this article, the authors review the strengths and limitations of current space-based observational capabilities for several important ArcticBoreal Zone components and make recommendations for improving upon these current capabilities, and recommend an interdisciplinary and stepwise approach to develop a comprehensive ABZ Observing Network (ABZON), beginning with an initial focus on observing networks designed to gain process-based understanding for individual ABZ components and systems.
References
More filters
Book Chapter

Summary for Policymakers

TL;DR: The Global Energy Assessment (GEA) as mentioned in this paper identifies strategies that could help resolve the multiple challenges simultaneously and bring multiple benefits, including sustainable economic and social development, poverty eradication, adequate food production and food security, health for all, climate protection, conservation of ecosystems, and security.
Journal ArticleDOI

An Overview of CMIP5 and the Experiment Design

TL;DR: The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance the authors' knowledge of climate variability and climate change.
Related Papers (5)
Frequently Asked Questions (12)
Q1. What are the contributions in this paper?

This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth‐system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. The evolution towards applying Earth‐system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the representations of processes that are already incorporated or through adding new processes or components, are discussed. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space‐based observing systems, further long‐term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co‐ operation. 

Global models are beginning to be run with sub‐ 10km atmospheric grids that resolve mesoscale weather including the most extreme tropical storms,  and the coupling of such atmospheric components to fine‐resolution oceanic and terrestrial  components could revolutionize our ability to correct long‐standing model biases, reduce the need  for downscaling and provide predictions of regional impacts and changes in extremes from months  to decades ahead. 

The advantages of fully integrating chemistry within the atmospheric component of a model  include use of (i) the model’s parameterizations of convection and diffusion to redistribute species,  (ii) the convection scheme also to parameterize nitric oxide generation by lightning, (iii) model cloud  and aerosol distributions in calculating photodissociation and heterogeneous reactions, (iv) the  model’s precipitation parameterization in the calculation of wet deposition and (v) the model’s land‐ surface parameters in the calculation of dry deposition and biogenic emissions. 

The GEOSS Water Strategy gives priority to the use of water‐related Earth observations in six  critical theme areas, namely enhancing the global security of domestic and useable water supplies,  adapting water resource systems to the impacts of climate change, meeting the water‐related health  and welfare needs of the poor, protecting from hydrometeorological extremes such as floods and  droughts, ensuring access to water for ecosystems and biological systems, and addressing the more  general water‐food‐energy security nexus that results from growing populations, growing  consumption as countries develop, and climate change (World Economic Forum, 2011). 

Sustained and Coordinated Processing of Environmental Satellite data for  Climate Monitoring  SeaWIFS  Sea‐Viewing Wide Field‐of‐View satellite‐borne Sensor  Sentinel‐n  Series of Earth‐observation satellites of the Copernicus programme  SEVIRI  Spinning Enhanced Visible and InfraRed Imager on EUMETSAT geostationary  satellites  SGLI  Second Generation Global Imager on GCOM‐C satellites  SIMBA  Sun‐earth IMBAlance radiometer cubesat mission  SLA  Sea‐level anomaly  SLSTR  Sea and Land Surface Temperature Radiometer on Sentinel‐3  SMAP  Soil Moisture Active Passive NASA satellite  SMMR  Scanning Multichannel Microwave Radiometer on NASA’s Nimbus‐7 satellite  SMOS  Soil Moisture and Ocean Salinity mission of ESA  SORCE  Solar Radiation and Climate Experiment mission of NASA  SRTM  Shuttle Radar Topography Mission  SSM/I  Special Sensor Microwave Imager instrument on DMSP satellites  SSS  Sea‐surface salinity  SST  Sea‐surface temperature  Suomi NPP  Suomi National Polar‐orbiting Partnership, first satellite in the JPSS series  SWOT  Surface Water Ocean Topography mission  TanDEM‐X  Synthetic aperture radar satellite twinned with TerraSAR‐X for digital elevation  modelling  TAO/TRITON  Array of moored buoys in the tropical Pacific Ocean  TCCON  Total Carbon Column Observing Network  TCRE  Transient Climate Response to cumulative CO2 emissions   Page 119  29 February 2016 TEMPEST‐D  Temporal Experiment for Storms and Tropical Systems – Demonstrator cubesat  mission  TEMPO  Tropospheric Emissions: Monitoring of Pollution mission of NASA  TES  Tropospheric Emission Spectrometer on Aura  Terra  Satellite of the EOS programme  TerraSAR‐X  Synthetic Aperture radar satellite  TOMS  Total Ozone Mapping Spectrometer on multiple satellites  Topex/Poseidon  Satellite mission to map ocean surface topography  TPOS  Tropical Pacific Observing System  TRMM  Tropical Rainfall Measuring Mission  TROPOMI  Tropospheric Monitoring Instrument, extending the capabilities of OMI  3MI  Multi‐viewing, Multi‐channel, Multi‐polarization Imaging instrument on Metop‐ SG  UNEP  United Nations Environment Programme  UNESCO  United Nations Educational, Scientific and Cultural Organization  UNFCCC  United Nations Framework Convention on Climate Change  VIIRS  Visible Infrared Imaging Radiometer Suite on NPP and JPSS satellites  WCRP  World Climate Research Programme  WMO  World Meteorological Organization  WOCE  World Ocean Circulation Experiment  XBT  Expendable bathythermograph 

Fine resolution is also  desirable in ocean models because of the important and widespread role played by mesoscale eddy   Page 53  29 February 2016 motions (with diameters ranging from a few tens to more than 100 km), which contain almost 90%  of the total kinetic energy of the ocean and are the major driver of heat transport and interactions  with biogeochemistry. 

Improved land‐surface  products based on the MERRA (Rienecker et al., 2011) and ERA‐Interim (Dee et al., 2011) reanalyses  have been derived respectively by Reichle et al. (2011) and Balsamo et al. (2015), through running  updated land‐surface model components driven by reanalysed meteorological fields, with  precipitation rescaled to match independent monthly analyses of rain‐gauge and other observed  data. 

Observations from land‐ based meteorological networks have increased in number, but coverage is still far from uniform, and  even generally welcome improvements such as increases since around the year 2000 in the number  of available radiosonde observations may cause problems in integration with space‐based  observations unless care is taken to reconcile the biases of the different types of measurement  (Simmons et al., 2014). 

Carbon dioxide provides a  further example, with column measurements from the SCIAMACHY instrument on Envisat followed  by those from the dedicated GOSAT and OCO‐2 missions, with continuation provided by at least  OCO‐3 and GOSAT‐2, supplemented by upper tropospheric measurements from high spectral  resolution infrared sounders beginning with AIRS on EOS/Aqua and continued by instruments such  as IASI and CrIS on operational meteorological platforms. 

Data on snow are accordingly important for initialization or evaluation on all time  scales over which Earth‐system models are applied: for weather forecasting (where the presence of  lying snow must be well represented to avoid near‐surface air temperature errors), sub‐seasonal and  seasonal prediction (where initial conditions on snow depth are important, and melting has impacts  on soil moisture and the surface energy balance) and long‐term climate simulations and projections  (where snow/albedo feedbacks must be well represented and changes in snow climatology and the  associated hydrology reliably identified). 

However, there are measurable improvements in  both weather forecasts and simulations of recent climate that can be attributed to parameterization  developments:   improved representation of the boundary layer, clouds and convection, including their  diurnal cycles, in models robust across all scales of resolution, including grid lengths of less  than 10 km;  improved understanding of how the representation of land and atmospheric sub‐grid scale  processes affect the prediction of climate change by these models; 

The Sentinel‐4 and ‐5 instruments will be   Page 25  29 February 2016 deployed not on dedicated satellites but respectively on the operational meteorological  geostationary (Meteosat Third Generation) and polar‐orbiting (Metop‐SG) platforms, where they will  complement other instruments, together providing a rich set of data for monitoring climate and air  quality.