scispace - formally typeset
Open AccessJournal ArticleDOI

Scanning X-ray microdiffraction with submicrometer white beam for strain/stress and orientation mapping in thin films.

TLDR
Scanning X-ray microdiffraction (microSXRD) combines the use of high-brilliance synchrotron sources with the latest achromaticX-ray focusing optics and fast large-area two-dimensional-detector technology to study thin aluminium and copper blanket films and lines following electromigration testing and/or thermal cycling experiments.
Abstract
Scanning X-ray microdiffraction (µSXRD) combines the use of high-brilliance synchrotron sources with the latest achromatic X-ray focusing optics and fast large-area two-dimensional-detector technology. Using white beams or a combination of white and monochromatic beams, this technique allows for the orientation and strain/stress mapping of polycrystalline thin films with submicrometer spatial resolution. The technique is described in detail as applied to the study of thin aluminium and copper blanket films and lines following electromigration testing and/or thermal cycling experiments. It is shown that there are significant orientation and strain/stress variations between grains and inside individual grains. A polycrystalline film when investigated at the granular (micrometer) level shows a highly mechanically inhomogeneous medium that allows insight into its mesoscopic properties. If the µSXRD data are averaged over a macroscopic range, results show good agreement with direct macroscopic texture and stress measurements.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Probing intra-granular deformation by micro-beam Laue diffraction

TL;DR: In this article, micro-beam Laue diffraction is used to probe the interior of individual grains within a polycrystalline sample and the diffracted radiation forms a pattern of Laue spots which is captured by an area detector.
Posted Content

A tunable multi-color "rainbow" filter for improved stress and dislocation density field mapping in polycrystals using x-ray Laue microdiffraction

TL;DR: The `rainbow' method is presented, which allows measurement of the energy profiles of the Laue spots while remaining in the white-beam mode and its validation through the measurement of a known lattice parameter.
Journal ArticleDOI

Imaging of grain-level orientation and strain in thicker metallic polycrystals by high energy transmission micro-beam Laue (HETL) diffraction techniques

TL;DR: For high performance, safety-critical applications, such as aerospace components, in-depth understanding of the material's response to complex loading conditions is essential as discussed by the authors, which is essential for high performance and safety critical applications.
Journal ArticleDOI

Evidence for residual elastic strain in deformed natural quartz

TL;DR: In this paper, the authors measured residual elastic strain in naturally deformed, quartz-containing rocks with high spatial resolution using Laue microdiffraction with white synchrotron x-rays.
Journal ArticleDOI

Using a non-monochromatic microbeam for serial snapshot crystallography

TL;DR: In this paper, a broad-band-pass diffraction method based on Laue single-crystal microdiffraction and the experimental setup on BL12.3.2 at the Advanced Light Source in Berkeley is presented.
References
More filters
Journal ArticleDOI

Formation of Optical Images by X-Rays

TL;DR: Several conceivable methods for the formation of optical images by x-rays are considered, and a method employing concave mirrors is adopted as the most promising.
Journal ArticleDOI

A compound refractive lens for focusing high-energy X-rays

TL;DR: In this article, a simple procedure for fabricating refractive lenses that are effective for focusing of X-rays in the energy range 5-40 keV is described, and the problem associated with absorption is minimized by fabricating the lenses from low-atomic-weight materials.
Journal ArticleDOI

Stress generation by electromigration

TL;DR: In this article, the authors studied the stresses in aluminum thin films on TiN by transmission x-ray topography and found that the stresses are more compressive in the anode regions.
Journal ArticleDOI

In situ measurement of grain rotation during deformation of polycrystals.

TL;DR: A universal method for providing data on the underlying structural dynamics at the grain and subgrain level based on diffraction with focused hard x-rays is presented.
Journal ArticleDOI

Electromigration path in Cu thin-film lines

TL;DR: For wide polycrystalline lines, the dominant diffusion mechanism is a mixture of grain boundary and surface diffusion, while in narrow lines (< 1 μm) the dominant mechanism is surface transport as mentioned in this paper.
Related Papers (5)