scispace - formally typeset
Journal ArticleDOI

Semiconductor spintronics

Reads0
Chats0
TLDR
In this article, the authors review recent progress made in the field of semiconductor spintronics, a branch of the semiconductor electronics where both charge and spin degrees of freedom play an important role in realizing unique functionalities.
Abstract
We review recent progress made in the field of semiconductor spintronics, a branch of semiconductor electronics where both charge and spin degrees of freedom play an important role in realizing unique functionalities. We first describe the new spin-dependent phenomena found in semiconductors including carrier-induced ferromagnetism in III-V compounds, followed by an account of our current understanding of such spin-dependent phenomena. Then we summarize the challenges the semiconductor spintronics has to meet in order for it to be a success as "electronics".

read more

Citations
More filters
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Spin-orbit interactions of light

TL;DR: In this paper, the authors provide an overview of the fundamental origins and important applications of the main spin-orbit interaction phenomena in modern optics that play a crucial role at subwavelength scales, including spin-Hall effects in inhomogeneous media and at optical interfaces, spindependent effects in non-paraxial (focused or scattered) fields, spin-controlled shaping of light using anisotropic structured interfaces (metasurfaces).
Journal ArticleDOI

New perspectives for Rashba spin–orbit coupling

TL;DR: Bychkov and Rashba as discussed by the authors introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors, which has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductor devices.
Journal ArticleDOI

Graphene Spintronics

TL;DR: The experimental and theoretical state-of-art concerning spin injection and transport, defect-induced magnetic moments, spin-orbit coupling and spin relaxation in graphene are reviewed.
Journal ArticleDOI

Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics

TL;DR: The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.
References
More filters
Journal ArticleDOI

Spintronics: a spin-based electronics vision for the future.

TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Journal ArticleDOI

Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices.

TL;DR: This work ascribes this giant magnetoresistance of (001)Fe/(001)Cr superlattices prepared by molecularbeam epitaxy to spin-dependent transmission of the conduction electrons between Fe layers through Cr layers.
Journal ArticleDOI

Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors

TL;DR: Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1)-Mn (x)Te and is used to predict materials with T (C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
Journal ArticleDOI

Quantum computation with quantum dots

TL;DR: In this paper, a universal set of one-and two-quantum-bit gates for quantum computation using the spin states of coupled single-electron quantum dots is proposed, and the desired operations are effected by the gating of the tunneling barrier between neighboring dots.
Journal ArticleDOI

Making Nonmagnetic Semiconductors Ferromagnetic

TL;DR: The magnetic coupling in all semiconductor ferromagnetic/nonmagnetic layered structures, together with the possibility of spin filtering in RTDs, shows the potential of the present material system for exploring new physics and for developing new functionality toward future electronics.
Related Papers (5)