scispace - formally typeset
Search or ask a question
Browse all papers

Posted ContentDOI
11 Feb 2020-bioRxiv
TL;DR: The Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses assessed the novelty of the human pathogen tentatively named 2019-nCoV and formally recognizes this virus as a sister to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Abstract: The present outbreak of lower respiratory tract infections, including respiratory distress syndrome, is the third spillover, in only two decades, of an animal coronavirus to humans resulting in a major epidemic. Here, the Coronavirus Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the official classification of viruses and taxa naming (taxonomy) of the Coronaviridae family, assessed the novelty of the human pathogen tentatively named 2019-nCoV. Based on phylogeny, taxonomy and established practice, the CSG formally recognizes this virus as a sister to severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus and designates it as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To facilitate communication, the CSG further proposes to use the following naming convention for individual isolates: SARS-CoV-2/Isolate/Host/Date/Location. The spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined. The independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying the entire (virus) species to complement research focused on individual pathogenic viruses of immediate significance. This research will improve our understanding of virus-host interactions in an ever-changing environment and enhance our preparedness for future outbreaks.

1,057 citations


Posted Content
TL;DR: This paper introduces sparse factorizations of the attention matrix which reduce this to $O(n)$, and generates unconditional samples that demonstrate global coherence and great diversity, and shows it is possible in principle to use self-attention to model sequences of length one million or more.
Abstract: Transformers are powerful sequence models, but require time and memory that grows quadratically with the sequence length. In this paper we introduce sparse factorizations of the attention matrix which reduce this to $O(n \sqrt{n})$. We also introduce a) a variation on architecture and initialization to train deeper networks, b) the recomputation of attention matrices to save memory, and c) fast attention kernels for training. We call networks with these changes Sparse Transformers, and show they can model sequences tens of thousands of timesteps long using hundreds of layers. We use the same architecture to model images, audio, and text from raw bytes, setting a new state of the art for density modeling of Enwik8, CIFAR-10, and ImageNet-64. We generate unconditional samples that demonstrate global coherence and great diversity, and show it is possible in principle to use self-attention to model sequences of length one million or more.

1,057 citations


Journal ArticleDOI
TL;DR: The results are consistent with those of KEYNOTE-224, supporting a favorable risk-to-benefit ratio for pembrolizumab in this population, and one-sided significance thresholds for OS and PFS did not reach statistical significance per specified criteria.
Abstract: PURPOSEPembrolizumab demonstrated antitumor activity and safety in the phase II KEYNOTE-224 trial in previously treated patients with advanced hepatocellular carcinoma (HCC). KEYNOTE-240 evaluated ...

1,056 citations


Journal ArticleDOI
TL;DR: The 2015 WHO Classification of Tumors of the Lung, Pleura, Thymus and Heart features the incorporation of many exciting new advances in thoracic tumor diagnosis and classification.

1,056 citations


Journal ArticleDOI
TL;DR: Covid-19 (the illness caused by SARS-CoV-2) has a range of clinical manifestations, including cough, fever, malaise, myalgias, gastrointestinal symptom...
Abstract: Key Clinical Points Mild or Moderate Covid-19 Covid-19 (the illness caused by SARS-CoV-2) has a range of clinical manifestations, including cough, fever, malaise, myalgias, gastrointestinal symptom...

1,056 citations


Journal ArticleDOI
TL;DR: JuMP as mentioned in this paper is an open-source modeling language that allows users to express a wide range of optimization problems (linear, mixed-integer, quadratic, conic-quadratic, semidefinite, and nonlinear) in a high-level, algebraic syntax.
Abstract: JuMP is an open-source modeling language that allows users to express a wide range of optimization problems (linear, mixed-integer, quadratic, conic-quadratic, semidefinite, and nonlinear) in a high-level, algebraic syntax. JuMP takes advantage of advanced features of the Julia programming language to offer unique functionality while achieving performance on par with commercial modeling tools for standard tasks. In this work we will provide benchmarks, present the novel aspects of the implementation, and discuss how JuMP can be extended to new problem classes and composed with state-of-the-art tools for visualization and interactivity.

1,056 citations


Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the mechanisms underlying CRS pathophysiology, risk factors, clinical presentation, differential diagnoses, and prognostic factors and gives practical guidance to the management of the cytokine release syndrome.
Abstract: During the last decade the field of cancer immunotherapy has witnessed impressive progress. Highly effective immunotherapies such as immune checkpoint inhibition, and T-cell engaging therapies like bispecific T-cell engaging (BiTE) single-chain antibody constructs and chimeric antigen receptor (CAR) T cells have shown remarkable efficacy in clinical trials and some of these agents have already received regulatory approval. However, along with growing experience in the clinical application of these potent immunotherapeutic agents comes the increasing awareness of their inherent and potentially fatal adverse effects, most notably the cytokine release syndrome (CRS). This review provides a comprehensive overview of the mechanisms underlying CRS pathophysiology, risk factors, clinical presentation, differential diagnoses, and prognostic factors. In addition, based on the current evidence we give practical guidance to the management of the cytokine release syndrome.

1,056 citations


Journal ArticleDOI
08 Sep 2017-Science
TL;DR: In this article, the authors review recent experimental progress in quantum many-body simulation and comment on future directions, and present a review of the current state-of-the-art in this field.
Abstract: Quantum simulation, a subdiscipline of quantum computation, can provide valuable insight into difficult quantum problems in physics or chemistry. Ultracold atoms in optical lattices represent an ideal platform for simulations of quantum many-body problems. Within this setting, quantum gas microscopes enable single atom observation and manipulation in large samples. Ultracold atom–based quantum simulators have already been used to probe quantum magnetism, to realize and detect topological quantum matter, and to study quantum systems with controlled long-range interactions. Experiments on many-body systems out of equilibrium have also provided results in regimes unavailable to the most advanced supercomputers. We review recent experimental progress in this field and comment on future directions.

1,056 citations


Journal ArticleDOI
01 Jun 2019
TL;DR: The complexity and rise of data in healthcare means that artificial intelligence will increasingly be applied within the field, and several types of AI are already being employed by payers and providers of care, and life sciences companies.
Abstract: The complexity and rise of data in healthcare means that artificial intelligence (AI) will increasingly be applied within the field. Several types of AI are already being employed by payers and providers of care, and life sciences companies. The key categories of applications involve diagnosis and treatment recommendations, patient engagement and adherence, and administrative activities. Although there are many instances in which AI can perform healthcare tasks as well or better than humans, implementation factors will prevent large-scale automation of healthcare professional jobs for a considerable period. Ethical issues in the application of AI to healthcare are also discussed.

1,056 citations


Journal ArticleDOI
TL;DR: This work presents a way of thinking about machine learning that gives it its own place in the econometric toolbox, and aims to make them conceptually easier to use by providing a crisper understanding of how these algorithms work, where they excel, and where they can stumble.
Abstract: Machines are increasingly doing “intelligent” things. Face recognition algorithms use a large dataset of photos labeled as having a face or not to estimate a function that predicts the pre...

1,055 citations


Posted Content
TL;DR: Denoising diffusion implicit models (DDIMs) are presented, a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs that can produce high quality samples faster and perform semantically meaningful image interpolation directly in the latent space.
Abstract: Denoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusion implicit models (DDIMs), a more efficient class of iterative implicit probabilistic models with the same training procedure as DDPMs. In DDPMs, the generative process is defined as the reverse of a Markovian diffusion process. We construct a class of non-Markovian diffusion processes that lead to the same training objective, but whose reverse process can be much faster to sample from. We empirically demonstrate that DDIMs can produce high quality samples $10 \times$ to $50 \times$ faster in terms of wall-clock time compared to DDPMs, allow us to trade off computation for sample quality, and can perform semantically meaningful image interpolation directly in the latent space.

Journal ArticleDOI
05 Aug 2016-Science
TL;DR: The guiding principle of the classification is to find irreducible representations of the little group of lattice symmetries at high-symmetry points in the Brillouin zone for each of the 230 space groups (SGs), the dimension of which corresponds to the number of bands that meet at the high-Symmetry point.
Abstract: INTRODUCTION Condensed-matter systems have recently become a fertile ground for the discovery of fermionic particles and phenomena predicted in high-energy physics; examples include Majorana fermions, as well as Dirac and Weyl semimetals. However, fermions in condensed-matter systems are not constrained by Poincare symmetry. Instead, they must only respect the crystal symmetry of one of the 230 space groups. Hence, there is the potential to find and classify free fermionic excitations in solid-state systems that have no high-energy counterparts. RATIONALE The guiding principle of our classification is to find irreducible representations of the little group of lattice symmetries at high-symmetry points in the Brillouin zone (BZ) for each of the 230 space groups (SGs), the dimension of which corresponds to the number of bands that meet at the high-symmetry point. Because we are interested in systems with spin-orbit coupling, we considered only the double-valued representations, where a 2π rotation gives a minus sign. Furthermore, we considered systems with time-reversal symmetry that squares to –1. For each unconventional representation, we computed the low-energy k · p Hamiltonian near the band crossings by writing down all terms allowed by the crystal symmetry. This allows us to further differentiate the band crossings by the degeneracy along lines and planes that emanate from the high-symmetry point, and also to compute topological invariants. For point degeneracies, we computed the monopole charge of the band-crossing; for line nodes, we computed the Berry phase of loops encircling the nodes. RESULTS We found that three space groups exhibit symmetry-protected three-band crossings. In two cases, this results in a threefold degenerate point node, whereas the third case results in a line node away from the high-symmetry point. These crossings are required to have a nonzero Chern number and hence display surface Fermi arcs. However, upon applying a magnetic field, they have an unusual Landau level structure, which distinguishes them from single and double Weyl points. Under the action of spatial symmetries, these fermions transform as spin-1 particles, as a consequence of the interplay between nonsymmorphic space group symmetries and spin. Additionally, we found that six space groups can host sixfold degeneracies. Two of these consist of two threefold degeneracies with opposite chirality, forced to be degenerate by the combination of time reversal and inversion symmetry, and can be described as “sixfold Dirac points.” The other four are distinct. Furthermore, seven space groups can host eightfold degeneracies. In two cases, the eightfold degeneracies are required; all bands come in groups of eight that cross at a particular point in the BZ. These two cases also exhibit fourfold degenerate line nodes, from which other semimetals can be derived: By adding strain or a magnetic field, these line nodes split into Weyl, Dirac, or line node semimetals. For all the three-, six- and eight-band crossings, nonsymmorphic symmetries play a crucial role in protecting the band crossing. Last, we found that seven space groups may host fourfold degenerate “spin-3/2” fermions at high symmetry points. Like their spin-1 counterparts, these quasiparticles host Fermi surfaces with nonzero Chern number. Unlike the other cases we considered, however, these fermions can be stabilized by both symmorphic and nonsymmorphic symmetries. Three space groups that host these excitations also host unconventional fermions at other points in the BZ. We propose nearly 40 candidate materials that realize each type of fermion near the Fermi level, as verified with ab initio calculations. Seventeen of these have been previously synthesized in single-crystal form, whereas others have been reported in powder form. CONCLUSION We have analyzed all types of fermions that can occur in spin-orbit coupled crystals with time-reversal symmetry and explored their topological properties. We found that there are several distinct types of such unconventional excitations, which are differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. We found natural generalizations of Weyl points: three- and four-band crossings described by a simple k · S Hamiltonian, where S i is the set of spin generators in either the spin-1 or spin-3/2 representations. These points carry a Chern number and, consequently, can exhibit Fermi arc surface states. We also found excitations with six- and eightfold degeneracies. These higher-band crossings create a tunable platform to realize topological semimetals by applying an external magnetic field or strain to the fourfold degenerate line nodes. Last, we propose realizations for each species of fermion in known materials, many of which are known to exist in single-crystal form.

Journal ArticleDOI
TL;DR: Clinical trials using MSCs for representative diseases, including hematological disease, graft-versus-host disease, organ transplantation, diabetes, inflammatory diseases, and diseases in the liver, kidney, and lung are analyzed, as well as cardiovascular, bone and cartilage, neurological, and autoimmune diseases.

Proceedings ArticleDOI
Lifeng Shang1, Zhengdong Lu1, Hang Li1
09 Mar 2015
TL;DR: This article proposed Neural Responding Machine (NRM), a neural network-based response generator for short-text conversation, which formalizes the generation of response as a decoding process based on the latent representation of the input text, while both encoding and decoding are realized with recurrent neural networks (RNN).
Abstract: We propose Neural Responding Machine (NRM), a neural network-based response generator for Short-Text Conversation. NRM takes the general encoderdecoder framework: it formalizes the generation of response as a decoding process based on the latent representation of the input text, while both encoding and decoding are realized with recurrent neural networks (RNN). The NRM is trained with a large amount of one-round conversation data collected from a microblogging service. Empirical study shows that NRM can generate grammatically correct and content-wise appropriate responses to over 75% of the input text, outperforming stateof-the-arts in the same setting, including retrieval-based and SMT-based models.

Journal ArticleDOI
TL;DR: A review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.

Journal ArticleDOI
TL;DR: The Human Gene Mutation Database constitutes de facto the central unified gene/disease-oriented repository of heritable mutations causing human genetic disease used worldwide by researchers, clinicians, diagnostic laboratories and genetic counsellors, and is an essential tool for the annotation of next-generation sequencing data.
Abstract: The Human Gene Mutation Database (HGMD®) constitutes a comprehensive collection of published germline mutations in nuclear genes that underlie, or are closely associated with human inherited disease. At the time of writing (March 2017), the database contained in excess of 203,000 different gene lesions identified in over 8000 genes manually curated from over 2600 journals. With new mutation entries currently accumulating at a rate exceeding 17,000 per annum, HGMD represents de facto the central unified gene/disease-oriented repository of heritable mutations causing human genetic disease used worldwide by researchers, clinicians, diagnostic laboratories and genetic counsellors, and is an essential tool for the annotation of next-generation sequencing data. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions and non-profit organisations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via QIAGEN Inc.

Book ChapterDOI
08 Oct 2016
TL;DR: This paper proposed a new automated caption evaluation metric defined over scene graphs coined SPICE, which captures human judgments over model-generated captions better than other automatic metrics (e.g., system-level correlation of 0.88 with human judgments on the MS COCO dataset, versus 0.43 for CIDEr and 0.53 for METEOR).
Abstract: There is considerable interest in the task of automatically generating image captions. However, evaluation is challenging. Existing automatic evaluation metrics are primarily sensitive to n-gram overlap, which is neither necessary nor sufficient for the task of simulating human judgment. We hypothesize that semantic propositional content is an important component of human caption evaluation, and propose a new automated caption evaluation metric defined over scene graphs coined SPICE. Extensive evaluations across a range of models and datasets indicate that SPICE captures human judgments over model-generated captions better than other automatic metrics (e.g., system-level correlation of 0.88 with human judgments on the MS COCO dataset, versus 0.43 for CIDEr and 0.53 for METEOR). Furthermore, SPICE can answer questions such as which caption-generator best understands colors? and can caption-generators count?

Journal ArticleDOI
03 Jul 2015-Science
TL;DR: The physics, chemistry, and ecology of the oceans might be affected based on two CO2 emission trajectories: one business as usual and one with aggressive reductions, consistent with the Copenhagen Accord of keeping mean global temperature increase below 2°C in the 21st century.
Abstract: The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems—and the goods and services they provide—for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario—consistent with the Copenhagen Accord’s goal of a global temperature increase of less than 2°C—is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate.

Journal ArticleDOI
25 Aug 2016-Nature
TL;DR: Observations reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units.
Abstract: At a distance of 1.295 parsecs, the red dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun's closest stellar neighbour and one of the best-studied low-mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun and a mass of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days (ref. 3) and its quiescent activity levels and X-ray luminosity are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface.

Journal ArticleDOI
TL;DR: Single-cell variational inference (scVI) is a ready-to-use generative deep learning tool for large-scale single-cell RNA-seq data that enables raw data processing and a wide range of rapid and accurate downstream analyses.
Abstract: Single-cell transcriptome measurements can reveal unexplored biological diversity, but they suffer from technical noise and bias that must be modeled to account for the resulting uncertainty in downstream analyses. Here we introduce single-cell variational inference (scVI), a ready-to-use scalable framework for the probabilistic representation and analysis of gene expression in single cells ( https://github.com/YosefLab/scVI ). scVI uses stochastic optimization and deep neural networks to aggregate information across similar cells and genes and to approximate the distributions that underlie observed expression values, while accounting for batch effects and limited sensitivity. We used scVI for a range of fundamental analysis tasks including batch correction, visualization, clustering, and differential expression, and achieved high accuracy for each task.

Journal ArticleDOI
TL;DR: It is recommended that qualitative health researchers be more transparent about evaluations of their sample size sufficiency, situating these within broader and more encompassing assessments of data adequacy.
Abstract: Choosing a suitable sample size in qualitative research is an area of conceptual debate and practical uncertainty. That sample size principles, guidelines and tools have been developed to enable researchers to set, and justify the acceptability of, their sample size is an indication that the issue constitutes an important marker of the quality of qualitative research. Nevertheless, research shows that sample size sufficiency reporting is often poor, if not absent, across a range of disciplinary fields. A systematic analysis of single-interview-per-participant designs within three health-related journals from the disciplines of psychology, sociology and medicine, over a 15-year period, was conducted to examine whether and how sample sizes were justified and how sample size was characterised and discussed by authors. Data pertinent to sample size were extracted and analysed using qualitative and quantitative analytic techniques. Our findings demonstrate that provision of sample size justifications in qualitative health research is limited; is not contingent on the number of interviews; and relates to the journal of publication. Defence of sample size was most frequently supported across all three journals with reference to the principle of saturation and to pragmatic considerations. Qualitative sample sizes were predominantly – and often without justification – characterised as insufficient (i.e., ‘small’) and discussed in the context of study limitations. Sample size insufficiency was seen to threaten the validity and generalizability of studies’ results, with the latter being frequently conceived in nomothetic terms. We recommend, firstly, that qualitative health researchers be more transparent about evaluations of their sample size sufficiency, situating these within broader and more encompassing assessments of data adequacy. Secondly, we invite researchers critically to consider how saturation parameters found in prior methodological studies and sample size community norms might best inform, and apply to, their own project and encourage that data adequacy is best appraised with reference to features that are intrinsic to the study at hand. Finally, those reviewing papers have a vital role in supporting and encouraging transparent study-specific reporting.

Journal ArticleDOI
26 Jan 2017-Nature
TL;DR: E engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.
Abstract: Spinorbit coupling in electrons leads to many fascinating phenomena and important applications, from topological insulators to spintronics. Researchers have recently been exploring whether effects analogous to spinorbit coupling can arise in photons and, if so, what sort of perspectives this provides. Optical spinorbit coupling can lead to direction-dependent emissions and so may allow quantum optics to be chiral. This Review looks at experiments in the realm of chiral quantum optics and discusses how these demonstrations could add a new dimension of control to quantum networks and quantum many-body physics.

Journal ArticleDOI
TL;DR: The current recommendations, HGVS version 15.11, are presented, and briefly summarize the changes that were made since the 2000 publication, with most focus on removing inconsistencies and tightening definitions allowing automatic data processing.
Abstract: The consistent and unambiguous description of sequence variants is essential to report and exchange information on the analysis of a genome. In particular, DNA diagnostics critically depends on accurate and standardized description and sharing of the variants detected. The sequence variant nomenclature system proposed in 2000 by the Human Genome Variation Society has been widely adopted and has developed into an internationally accepted standard. The recommendations are currently commissioned through a Sequence Variant Description Working Group (SVD-WG) operating under the auspices of three international organizations: the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organization (HUGO). Requests for modifications and extensions go through the SVD-WG following a standard procedure including a community consultation step. Version numbers are assigned to the nomenclature system to allow users to specify the version used in their variant descriptions. Here, we present the current recommendations, HGVS version 15.11, and briefly summarize the changes that were made since the 2000 publication. Most focus has been on removing inconsistencies and tightening definitions allowing automatic data processing. An extensive version of the recommendations is available online, at http://www.HGVS.org/varnomen.

Journal ArticleDOI
TL;DR: In this article, the benefits of non-destructive testing, online monitoring and in situ machining are discussed, and strategies on how to manage residual stress, improve mechanical properties and eliminate defects such as porosity are suggested.
Abstract: Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to low and medium complexity parts. A variety of components have been successfully manufactured with this process, including Ti–6Al–4V spars and landing gear assemblies, aluminium wing ribs, steel wind tunnel models and cones. Strategies on how to manage residual stress, improve mechanical properties and eliminate defects such as porosity are suggested. Finally, the benefits of non-destructive testing, online monitoring and in situ machining are discussed.

Journal ArticleDOI
Erik Stam1
TL;DR: The authors in this article reviewed the entrepreneurial ecosystem literature and its shortcomings, and provided a novel synthesis including a causal scheme of how the framework and sy... and a causal depth and evidence base is rather limited.
Abstract: Regional policies for entrepreneurship are currently going through a transition from increasing the quantity of entrepreneurship to increasing the quality of entrepreneurship. The next step will be the transition from entrepreneurship policy towards policy for an entrepreneurial economy. The entrepreneurial ecosystem approach has been heralded as a new framework accommodating these transitions. This approach starts with the entrepreneurial actor, but emphasizes the context of productive entrepreneurship. Entrepreneurship is not only the output of the system, entrepreneurs are important players themselves in creating the ecosystem and keeping it healthy. This research briefing reviews the entrepreneurial ecosystem literature and its shortcomings, and provides a novel synthesis. The entrepreneurial ecosystem approach speaks directly to practitioners, but its causal depth and evidence base is rather limited. This article provides a novel synthesis including a causal scheme of how the framework and sy...

Journal ArticleDOI
TL;DR: The order and timing of species immigration during community assembly can affect species abundances at multiple spatial scales, and two requirements must be satisfied for historical contingency to occur: the regional pool contains species that can together cause priority effects, and local dynamics are rapid enough for early-arrived species to preempt or modify niches before other species arrive.
Abstract: The order and timing of species immigration during community assembly can affect species abundances at multiple spatial scales. Known as priority effects, these effects cause historical contingency in the structure and function of communities, resulting in alternative stable states, alternative transient states, or compositional cycles. The mechanisms of priority effects fall into two categories, niche preemption and niche modification, and the conditions for historical contingency by priority effects can be organized into two groups, those regarding regional species pool properties and those regarding local population dynamics. Specifically, two requirements must be satisfied for historical contingency to occur: The regional pool contains species that can together cause priority effects, and local dynamics are rapid enough for early-arriving species to preempt or modify niches before other species arrive. Organizing current knowledge this way reveals an outstanding key question: How are regional species ...

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the influence of precipitation and river stage on the sustainable performance of foundations of various urban buildings and infrastructures, as GWL causes changes in the stress state within soil.
Abstract: The sustainable performance of foundations of various urban buildings and infrastructures is strongly affected by groundwater level (GWL), as GWL causes changes in the stress state within soil. In the present study, the components affecting GWL were investigated, focusing on the effects of precipitation and river stage. These components were analyzed using a six-year database established for hydrological and groundwater monitoring data. Five study regions for which daily measured precipitation, river stage, and GWL data were available were compared. Different periods of precipitation, geographical characteristics, and local surface conditions were considered in the analysis. The results indicated that key influence components on GWL are different depending on the hydrological, geological, and geographical characteristics of the target regions. River stage had the strongest influence on GWL in urban areas near large rivers with a high ratio of paved surface. In rural areas, where the paved surface area ratio and soil permeability were low, the moving average showed a closer correlation to GWL than river stage. A moving average-based method to predict GWL variation with time was proposed for regions with a low ratio of paved surface area and low permeability soils.

Journal ArticleDOI
TL;DR: This paper proposes a novel design for an inline-formula that enables the construction of a high accuracy, brute-force, approximate and compressed-domain search based on product quantization, and applies it in different similarity search scenarios.
Abstract: Similarity search finds application in database systems handling complex data such as images or videos, which are typically represented by high-dimensional features and require specific indexing structures. This paper tackles the problem of better utilizing GPUs for this task. While GPUs excel at data parallel tasks such as distance computation, prior approaches in this domain are bottlenecked by algorithms that expose less parallelism, such as $k$ k -min selection, or make poor use of the memory hierarchy. We propose a novel design for $k$ k -selection. We apply it in different similarity search scenarios, by optimizing brute-force, approximate and compressed-domain search based on product quantization. In all these setups, we outperform the state of the art by large margins. Our implementation operates at up to 55 percent of theoretical peak performance, enabling a nearest neighbor implementation that is 8.5 × faster than prior GPU state of the art. It enables the construction of a high accuracy $k$ k -NN graph on 95 million images from the Yfcc100M dataset in 35 minutes, and of a graph connecting 1 billion vectors in less than 12 hours on 4 Maxwell Titan X GPUs. We have open-sourced our approach for the sake of comparison and reproducibility.

Journal ArticleDOI
TL;DR: Previous observations suggesting that underlying cardiovascular disease is associated with an increased risk of in-hospital death among patients hospitalized with Covid-19 were confirmed, and the results did not confirm previous concerns regarding a potential harmful association of ACE inhibitors or ARBs in this clinical context.
Abstract: Background Coronavirus disease 2019 (Covid-19) may disproportionately affect people with cardiovascular disease. Concern has been aroused regarding a potential harmful effect of angiotensi...

Journal ArticleDOI
TL;DR: In this article, the authors explored the financial asset capabilities of bitcoin using GARCH models and found that bitcoin can be classified as something in between gold and the American dollar on a scale from pure medium of exchange advantages to pure store of value advantages.