scispace - formally typeset
Search or ask a question

Showing papers on "Ballistic conduction published in 2017"


Journal ArticleDOI
TL;DR: Two-dimensional hexagonal boron nitride (h-BN) has similar lattice structure to graphene and has a lattice mismatch with graphene of less than 1.7%. At the same time, h-BN has an atomic level of flat surface, B atoms and N atoms saturated into the bond, which was considered the highest among the insulating substrates as discussed by the authors.

289 citations


Journal ArticleDOI
TL;DR: In this article, a large scale numerical simulation of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to spin reversal and spatial reflection is performed.
Abstract: Generalized hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symmetries. Here we perform large scale numerical simulations of spin dynamics in the anisotropic Heisenberg XXZ spin 1/2 chain starting from an inhomogeneous mixed initial state which is symmetric with respect to a combination of spin reversal and spatial reflection. In the isotropic and easy-axis regimes we find non-ballistic spin transport which we analyse in detail in terms of scaling exponents of the transported magnetization and scaling profiles of the spin density. While in the easy-axis regime we find accurate evidence of normal diffusion, the spin transport in the isotropic case is clearly super-diffusive, with the scaling exponent very close to 2/3, but with universal scaling dynamics which obeys the diffusion equation in nonlinearly scaled time.

218 citations


Journal ArticleDOI
TL;DR: The structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport and pave the way for disorder-free Majorana devices.
Abstract: Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

214 citations


Journal ArticleDOI
TL;DR: It is shown that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer’s ballistic limit Gball, and a theory of the ballistic-to-viscous crossover is developed using an approach based on quasi-hydrodynamic variables.
Abstract: Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer's ballistic limit [Formula: see text] The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at [Formula: see text] but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation [Formula: see text], where the viscous contribution [Formula: see text] dominates over [Formula: see text] in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics.

201 citations


Journal ArticleDOI
TL;DR: It is shown that a magnetic field induces 0–π transitions and φ0-junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.
Abstract: The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ0-junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.

94 citations


Journal ArticleDOI
TL;DR: In this article, the authors combine experimental measurements with coupled first-principles electronic structure theory and Boltzmann transport calculations to provide unprecedented insight into the internal quantum efficiency, and hence internal physics, of hot carriers in photoexcited gold (Au)-gallium nitride (GaN) nanostructures.
Abstract: Harnessing short-lived photoexcited electron-hole pairs in metal nanostructures has the potential to define a new phase of optoelectronics, enabling control of athermal mechanisms for light harvesting, photodetection and photocatalysis. To date, however, the spatiotemporal dynamics and transport of these photoexcited carriers have been only qualitatively characterized. Plasmon excitation has been widely viewed as an efficient mechanism for generating non-thermal hot carriers. Despite numerous experiments, conclusive evidence elucidating and quantifying the full dynamics of hot carrier generation, transport, and injection has not been reported. Here, we combine experimental measurements with coupled first-principles electronic structure theory and Boltzmann transport calculations to provide unprecedented insight into the internal quantum efficiency, and hence internal physics, of hot carriers in photoexcited gold (Au)-gallium nitride (GaN) nanostructures. Our results indicate that photoexcited electrons generated in 20 nm-thick Au nanostructures impinge ballistically on the Au-GaN interface. This discovery suggests that the energy of hot carriers could be harnessed from metal nanostructures without substantial losses via thermalization. Measurements and calculations also reveal the important role of metal band structure in hot carrier generation at energies above the interband threshold of the plasmonic nanoantenna. Taken together, our results advance the understanding of excited carrier dynamics in realistically-scaled metallic nanostructures and lay the foundations for the design of new optoelectronic devices that operate in the ballistic regime.

93 citations


Journal ArticleDOI
TL;DR: In this article, the spectral phonon temperature (SPT) was calculated for both the ballistic and diffusive phonons in both real and phase spaces, and it was shown that the vertical thermal transport across the dimensionally mismatched graphene-substrate interface is through the coupling between flexural acoustic phonons of the substrate with mode conversion.
Abstract: Although extensive experimental and theoretical works have been conducted to understand the ballistic and diffusive phonon transport in nanomaterials recently, direct observation of temperature and thermal nonequilibrium of different phonon modes has not been realized. Herein, we have developed a method within the framework of molecular dynamics to calculate the temperatures of phonons in both real and phase spaces. Taking silicon thin film and graphene as examples, we directly obtained the spectral phonon temperature (SPT) and observed the local thermal nonequilibrium between the ballistic and diffusive phonons. Such nonequilibrium also generally exists across interfaces and is surprisingly large, and it provides a significant additional thermal interfacial resistance mechanism besides phonon reflection. Our SPT results directly show that the vertical thermal transport across the dimensionally mismatched graphene-substrate interface is through the coupling between flexural acoustic phonons of graphene and the longitudinal phonons in the substrate with mode conversion. In the dimensionally matched interfaces, e.g., graphene-graphene junction and graphene-boron nitride planar interfaces, strong coupling occurs between the acoustic phonon modes on both sides, and the coupling decreases with interfacial mixing. The SPT method together with the spectral heat flux can eliminate the size effect of the thermal conductivity prediction induced from ballistic transport.

67 citations


Journal ArticleDOI
19 Jun 2017
TL;DR: In this paper, a single layer of boron atoms that was fabricated recently, possesses an extraordinarily high lattice thermal conductance in the ballistic transport regime, which even exceeds graphene.
Abstract: By way of the non-equilibrium Green’s function simulations and first-principles calculations, we report that borophene, a single layer of boron atoms that was fabricated recently, possesses an extraordinarily high lattice thermal conductance in the ballistic transport regime, which even exceeds graphene. In addition to the obvious reasons of light mass and strong bonding of boron atoms, the superior thermal conductance is mainly rooted in its strong structural anisotropy and unusual phonon transmission. For low-frequency phonons, the phonon transmission within borophene is nearly isotropic, similar to that of graphene. For high-frequency phonons, however, the transmission is one-dimensional, that is, all the phonons travel in one direction, giving rise to its ultra-high thermal conductance. The present study suggests that borophene is promising for applications in efficient heat dissipation and thermal management, and also an ideal material for revealing fundamentals of dimensionality effect on phonon transport in ballistic regime. Theoretical calculations reveal that borophene has a very high thermal conductance, higher than that of graphene, which currently holds the record among 2D materials. A team led by Yong-Wei Zhang at A*STAR in Singapore demonstrated that thermal transport in borophene is highly anisotropic, that is, heat is transported more efficiently in one direction than in the perpendicular one. They attributed this behavior to the fact that phonons—the quanta of the vibrations of the crystal lattice—tend to travel along a specific direction, because the bonds between boron atoms are particularly strong in that direction. The resulting thermal conductance is higher than that of any other 2D material. An improved understanding of thermal transport is relevant for applications in heat dissipation and thermal management.

64 citations


Journal ArticleDOI
TL;DR: In this article, the authors reported the observation of a circular photogalvanic current excited by terahertz laser radiation in helical edge channels of two-dimensional (2D) HgTe topological insulators.
Abstract: We report on the observation of a circular photogalvanic current excited by terahertz laser radiation in helical edge channels of two-dimensional (2D) HgTe topological insulators (TIs). The direction of the photocurrent reverses by switching the radiation polarization from a right-handed to a left-handed one and, for fixed photon helicity, is opposite for the opposite edges. The photocurrent is detected in a wide range of gate voltages. With decreasing the Fermi level below the conduction band bottom, the current emerges, reaches a maximum, decreases, changes its sign close to the charge neutrality point (CNP), and again rises. Conductance measured over a approximate to 3 mu m distance at CNP approaches 2e(2)/ h, the value characteristic for ballistic transport in 2D TIs. The data reveal that the photocurrent is caused by photoionization of helical edge electrons to the conduction band. We discuss the microscopic model of this phenomenon and compare calculations with experimental data.

63 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron-hole collisions.
Abstract: Ballistic transport occurs whenever electrons propagate without collisions deflecting their trajectory. It is normally observed in conductors with a negligible concentration of impurities, at low temperature, to avoid electron–phonon scattering. Here, we use suspended bilayer graphene devices to reveal a new regime, in which ballistic transport is not limited by scattering with phonons or impurities, but by electron–hole collisions. The phenomenon manifests itself in a negative four-terminal resistance that becomes visible when the density of holes (electrons) is suppressed by gate-shifting the Fermi level in the conduction (valence) band, above the thermal energy. For smaller densities, transport is diffusive, and the measured conductivity is reproduced quantitatively, with no fitting parameters, by including electron–hole scattering as the only process causing velocity relaxation. Experiments on a trilayer device show that the phenomenon is robust and that transport at charge neutrality is governed by the same physics. Our results provide a textbook illustration of a transport regime that had not been observed previously and clarify the nature of conduction through charge-neutral graphene under conditions in which carrier density inhomogeneity is immaterial. They also demonstrate that transport can be limited by a fully electronic mechanism, originating from the same microscopic processes that govern the physics of Dirac-like plasmas. Whether ballistic transport can occur in a system is usually governed by the number of impurities, but a ballistic transport regime is seen in charge-neutral graphene that is limited not by impurities or phonons, but electron–hole collisions.

58 citations


Journal ArticleDOI
TL;DR: It is believed that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.
Abstract: Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the rel...

Journal ArticleDOI
TL;DR: Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.
Abstract: We show how finite-size scaling of a bulk photovoltaic effect-generated electric field in epitaxial ferroelectric insulating BaTiO_{3}(001) films and a photo-Hall response involving the bulk photovoltaic current reveal a large room-temperature mean free path of photogenerated nonthermalized electrons. Experimental determination of mesoscopic ballistic optically generated carrier transport opens a new paradigm for hot electron-based solar energy conversion, and for facile control of ballistic transport distinct from existing low-dimensional semiconductor interfaces, surfaces, layers, or other structures.

Journal ArticleDOI
TL;DR: In this paper, the phonon Boltzmann transport equation (BTE) with relaxation time approximation and phonon tracing Monte Carlo (MC) method were used to investigate these two slip boundary conditions for the ballistic-diffusive heat conduction in nanofilms on a substrate.
Abstract: Ballistic–diffusive heat conduction, which is predominantly affected by boundaries and interfaces, will occur in nanostructures whose characteristic lengths are comparable to the phonon mean free path (MFP). Here, we demonstrated that interactions between phonons and boundaries (or interfaces) could lead to two kinds of slip boundary conditions in the ballistic–diffusive regime: boundary temperature jump and boundary heat flux slip. The phonon Boltzmann transport equation (BTE) with relaxation time approximation and the phonon tracing Monte Carlo (MC) method were used to investigate these two slip boundary conditions for the ballistic–diffusive heat conduction in nanofilms on a substrate. For cross-plane heat conduction where the boundary temperature jump is the dominant non-Fourier phenomenon, ballistic transport causes the temperature jumps and thus introduces a ballistic thermal resistance. Importantly, when considering the interface effect, the corresponding model was derived based on the phon...

Journal ArticleDOI
TL;DR: The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly correlated phenomena, including the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality.
Abstract: Quantum phase transitions are ubiquitous in many exotic behaviors of strongly-correlated materials. However the microscopic complexity impedes their quantitative understanding. Here, we observe thoroughly and comprehend the rich strongly-correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena.

Journal ArticleDOI
TL;DR: In this paper, the authors developed a theoretical framework for calculating magnetic noise from conducting two-dimensional (2D) materials, which can directly probe the wave-vector dependent transport properties of the material over a broad range of length scales, thus providing new insight into correlated phenomena in 2D electronic systems.
Abstract: We develop the theoretical framework for calculating magnetic noise from conducting two-dimensional (2D) materials. We describe how local measurements of this noise can directly probe the wave-vector dependent transport properties of the material over a broad range of length scales, thus providing new insight into a range of correlated phenomena in 2D electronic systems. As an example, we demonstrate how transport in the hydrodynamic regime in an electronic system exhibits a unique signature in the magnetic noise profile that distinguishes it from diffusive and ballistic transport and how it can be used to measure the viscosity of the electronic fluid. We employ a Boltzmann approach in a two-time relaxation-time approximation to compute the conductivity of graphene and quantitatively illustrate these transport regimes and the experimental feasibility of observing them. Next, we discuss signatures of isolated impurities lodged inside the conducting 2D material. The noise near an impurity is found to be suppressed compared to the background by an amount that is directly proportional to the cross-section of electrons/holes scattering off of the impurity. We use these results to outline an experimental proposal to measure the temperature dependent level shift and linewidth of the resonance associated with an Anderson impurity.

Journal ArticleDOI
TL;DR: In this article, the electronic transport across a junction between two merged InSb nanowires is studied to investigate how disordered these nanowire networks are, and conductance quantization plateaus are observed in most of the contact pairs of the epitaxial In Sb networks: the hallmark of ballistic transport behavior.
Abstract: Majorana zero modes (MZMs) are prime candidates for robust topological quantum bits, holding a great promise for quantum computing. Semiconducting nanowires with strong spin orbit coupling offer a promising platform to harness one-dimensional electron transport for Majorana physics. Demonstrating the topological nature of MZMs relies on braiding, accomplished by moving MZMs around each other in a certain sequence. Most of the proposed Majorana braiding circuits require nanowire networks with minimal disorder. Here, the electronic transport across a junction between two merged InSb nanowires is studied to investigate how disordered these nanowire networks are. Conductance quantization plateaus are observed in most of the contact pairs of the epitaxial InSb nanowire networks: the hallmark of ballistic transport behavior.

Journal ArticleDOI
TL;DR: In this article, the cross-plane thermal transport along the pore axial direction in nanoporous silicon thin films was investigated by using the phonon Boltzmann transport equation and the Monte Carlo (MC) simulations.

Journal ArticleDOI
TL;DR: In this article, an additive resistivity term ρmound was proposed to account for surface roughness, which is proportional to the ballistic resistivity times the average roughness slope, divided by the layer thickness.
Abstract: The resistivity ρ of epitaxial W(001) layers grown on MgO(001) at 900 °C increases from 5.63 ± 0.05 to 27.6 ± 0.6 μΩ-cm with decreasing thickness d = 390 to 4.5 nm. This increase is due to electron-surface scattering but is less pronounced after in situ annealing at 1050 °C, leading to a 7%–13% lower ρ for d < 20 nm. The ρ(d) data from in situ and ex situ transport measurements at 295 and 77 K cannot be satisfactorily described using the existing Fuchs-Sondheimer (FS) model for surface scattering, as ρ for d < 9 nm is larger than the FS prediction and the annealing effects are inconsistent with a change in either the bulk mean free path or the surface scattering specularity. In contrast, introducing an additive resistivity term ρmound which accounts for surface roughness resolves both shortcomings. The new term is due to electron reflection at surface mounds and is, therefore, proportional to the ballistic resistance times the average surface roughness slope, divided by the layer thickness. This is confir...

Journal ArticleDOI
TL;DR: This work probes the wavelike character of standing-wave edge states in graphene by Fabry-Perot (FP) interferometry and finds that they can propagate ballistically over micron-scale distances, and provides a practical route to developing electron analog of optical FP resonators at the graphene edge.
Abstract: Electron surface states in solids are typically confined to the outermost atomic layers and, due to surface disorder, have negligible impact on electronic transport. Here, we demonstrate a very different behavior for surface states in graphene. We probe the wavelike character of these states by Fabry-Perot (FP) interferometry and find that, in contrast to theoretical predictions, these states can propagate ballistically over micron-scale distances. This is achieved by embedding a graphene resonator formed by gate-defined p-n junctions within a graphene superconductor-normal-superconductor structure. By combining superconducting Aharanov-Bohm interferometry with Fourier methods, we visualize spatially resolved current flow and image FP resonances due to p-n-p cavity modes. The coherence of the standing-wave edge states is revealed by observing a new family of FP resonances, which coexist with the bulk resonances. The edge resonances have periodicity distinct from that of the bulk states manifest in a repeated spatial redistribution of current on and off the FP resonances. This behavior is accompanied by a modulation of the multiple Andreev reflection amplitude on-and-off resonance, indicating that electrons propagate ballistically in a fully coherent fashion. These results, which were not anticipated by theory, provide a practical route to developing electron analog of optical FP resonators at the graphene edge.

Journal ArticleDOI
TL;DR: It is demonstrated that the nonmonotonic behavior of the conductivity and the nearly ballistic thermal transport at δ=2.0 obtained under nonequilibrium conditions can be explained consistently by studying the variation of largest Lyapunov exponent λ_{max} with δ, and excess energy diffusion in the equilibrium microcanonical system.
Abstract: We study the thermal transport properties of the one-dimensional Fermi-Pasta-Ulam model (β type) with long-range interactions. The strength of the long-range interaction decreases with the (shortest) distance between the lattice sites as distance^{-δ}, where δ≥0. Two Langevin heat baths at unequal temperatures are connected to the ends of the one-dimensional lattice via short-range harmonic interactions that drive the system away from thermal equilibrium. In the nonequilibrium steady state the heat current, thermal conductivity, and temperature profiles are computed by solving the equations of motion numerically. It is found that the conductivity κ has an interesting nonmonotonic dependence with δ with a maximum at δ=2.0 for this model. Moreover, at δ=2.0,κ diverges almost linearly with system size N and the temperature profile has a negligible slope, as one expects in ballistic transport for an integrable system. We demonstrate that the nonmonotonic behavior of the conductivity and the nearly ballistic thermal transport at δ=2.0 obtained under nonequilibrium conditions can be explained consistently by studying the variation of largest Lyapunov exponent λ_{max} with δ, and excess energy diffusion in the equilibrium microcanonical system.

Journal ArticleDOI
Sang Yeon Lee1, Jinseo Kim1, A-Young Park1, Jucheol Park, Hyungtak Seo1 
22 May 2017-ACS Nano
TL;DR: A dramatic improvement in carrier conduction equivalent to metallic conduction is obtained at the heterointerface formed after deposition of an Al2O3 layer on a nanocrystalline In2 O3 layer, and this 2D channel is air-stable by complete Al 2O3 passivation and thereby promises applicability for implementation in devices.
Abstract: The tuning of electrical properties in oxides via surface and interfacial two-dimensional electron gas (2DEG) channels is of great interest, as they reveal the extraordinary transition from insulating or semiconducting characteristics to metallic conduction or superconductivity enabled by the ballistic transport of spatially confined electrons However, realizing the practical aspects of this exotic phenomenon toward short-range ordered and air-stable 2DEG channels remains a great challenge At the heterointerface formed after deposition of an Al2O3 layer on a nanocrystalline In2O3 layer, a dramatic improvement in carrier conduction equivalent to metallic conduction is obtained A conductivity increase by a factor of 1013 times that in raw In2O3, a sheet resistance of 850 Ω/cm2, and a room temperature Hall mobility of 205 cm2 V–1 s–1 are obtained, which are impossible to achieve by tuning each layer individually The physicochemical origin of metallic conduction is mainly ascribed to the 2D interfacially

Journal ArticleDOI
TL;DR: The first experimental observation of room temperature quantum ballistic transport in Ge is demonstrated, favorable for integration in complementary metal–oxide–semiconductor platform technology.
Abstract: Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of “on”-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al–Ge–Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal–oxide–semiconductor platform technology.

Journal ArticleDOI
TL;DR: The triangular ballistic rectifier (TBR) as discussed by the authors is a four-terminal device with a triangular anti-dot at their intersection, and two sides of the triangle are positioned and angled such that ballistic carriers from the two input electrodes are redirected like billiard balls to one of the two output contacts irrespective of the instantaneous polarity of the input.
Abstract: It has been shown that graphene can demonstrate ballistic transport at room temperature. This opens up a range of practical applications that do not require graphene to have a band gap, which is one of the most significant challenges for its use in the electronics industry. Here, the very latest high mobility graphene (>100,000 cm2 V−1 s−1) fabrication techniques will be demonstrated so that one such device, called the triangular ballistic rectifier (TBR), can be characterised. The TBR is a four-terminal device with a triangular anti-dot at their intersection; two sides of the triangle are positioned and angled such that ballistic carriers from the two input electrodes are redirected like billiard balls to one of the two output contacts irrespective of the instantaneous polarity of the input. A responsivity of 2400 mV mW−1 is demonstrated at room temperature from a low-frequency input signal. The ballistic nature of the device is justified and explained in more detail with low-temperature measurements.

Journal ArticleDOI
TL;DR: In this article, the authors simulate ballistic thermal wave propagation in nanowires with a phonon-traced Monte Carlo method to investigate the effects of the nanowire characteristics including the radial Knudsen number and the specularity parameter.

Journal ArticleDOI
TL;DR: In this paper, a surface potential-based compact model for nanowire FETs is presented, which considers 1-D electrostatics along with the effect of multiple energy subbands.
Abstract: We present a surface potential-based compact model for nanowire FETs, which considers 1-D electrostatics along with the effect of multiple energy subbands. The model is valid for any semiconductor material, cross-sectional geometry, and any channel length with transport regimes varying from drift-diffusive to quasi-ballistic. The model captures the phenomenon of quantum capacitance and the effect of temperature. We have validated it with numerical simulations and experimental data for Si, Ge, and InAs nanowires of different geometries. Circuit simulation has also been performed with the model. The physics-based model is accurate and can be used as a tool for analysis and prediction of the effects of geometry scaling, material dependence, and temperature variation on device and circuit characteristics. To the best of our knowledge, this is the first time a compact model for nanowire FETs is being presented, which includes multiple subbands along with geometry scaling while being valid for different degenerate and nondegenerate semiconductor materials.

Journal ArticleDOI
TL;DR: In this paper, a monolithic integration and electrical characterization of InAs nanowires (NWs) with the well-defined geometries and positions on Si is presented as a platform for quantum transport studies.
Abstract: We present the monolithic integration and electrical characterization of InAs nanowires (NWs) with the well-defined geometries and positions on Si as a platform for quantum transport studies. Hereby, one-dimensional (1D) ballistic transport with step-like 1D conductance quantization in units of 2e2/h is demonstrated for NWs with the widths between 28 nm and 58 nm and a height of 40 nm. The electric field control of up to four individual modes is achieved. Furthermore, the sub-band structure of the nanowires is investigated using bias spectroscopy. The splitting between the first and the second sub-band increases as the width of the NWs is reduced, whereas the degeneracy of the second sub-band can be tuned by the symmetry of the NW cross section, in accordance with a “particle in a box” model. The length-dependent studies reveal ballistic transport for up to 300 nm and quasi-ballistic transport with a mean free path of 470 nm for longer InAs NW channels at 30 K. We anticipate that the ballistic 1D transport in monolithically integrated InAs NWs presented here will form the basis for sophisticated quantum wire devices for the future integrated circuits with additional functionalities.

Journal ArticleDOI
TL;DR: In this article, the authors make a concrete proposal for the observation of ballistic transport via local quantum-quench experiments in fermionic quantum-gas microscopes, which would also unveil the coexistence of ballistic and diffusive transport channels in one and the same system and provide a means of measuring finite-temperature Drude weights.
Abstract: Integrable models such as the spin-1/2 Heisenberg chain, the Lieb-Liniger, or the one-dimensional Hubbard model are known to avoid thermalization, which was also demonstrated in several quantum-quench experiments. Another dramatic consequence of integrability is the zero-frequency anomaly in transport coefficients, which results in ballistic finite-temperature transport, despite the presence of strong interactions. While this aspect of nonergodic dynamics has been known for a long time, there has so far not been any unambiguous experimental realization thereof. We make a concrete proposal for the observation of ballistic transport via local quantum-quench experiments in fermionic quantum-gas microscopes. Such an experiment would also unveil the coexistence of ballistic and diffusive transport channels in one and the same system and provide a means of measuring finite-temperature Drude weights. The connection between local quenches and linear-response functions is established via time-dependent Einstein relations.

Journal ArticleDOI
Jake Fillman1
TL;DR: In this paper, it was shown that if the rate of approximation is sufficiently rapid, then the associated quantum dynamics are ballistic in a rather strong sense; namely, the (normalized) Heisenberg evolution of the position operator converges strongly to a self-adjoint operator that is injective on the space of absolutely summable sequences.
Abstract: We study Jacobi matrices that are uniformly approximated by periodic operators. We show that if the rate of approximation is sufficiently rapid, then the associated quantum dynamics are ballistic in a rather strong sense; namely, the (normalized) Heisenberg evolution of the position operator converges strongly to a self-adjoint operator that is injective on the space of absolutely summable sequences. In particular, this means that all transport exponents corresponding to well-localized initial states are equal to one. Our result may be applied to a class of quantum many-body problems. Specifically, we establish a lower bound on the Lieb–Robinson velocity for an isotropic XY spin chain on the integers with limit-periodic couplings.

Journal ArticleDOI
TL;DR: In this article, a fully atomistic, device-based simulation of magnetoresistance experiments is used to analyze both the resistance peaks and the current flow at commensurability conditions.
Abstract: Commensurability oscillations in the magnetotransport of periodically patterned systems, emerging from the interplay of cyclotron orbit and pattern periodicity, are a benchmark of mesoscopic physics in electron gas systems. Exploiting similar effects in two-dimensional materials would allow exceptional control of electron behavior, but it is hindered by the requirement to maintain ballistic transport over large length scales. Recent experiments have overcome this obstacle and observed distinct magnetoresistance commensurability peaks for perforated graphene sheets (antidot lattices). Interpreting the exact mechanisms behind these peaks is of key importance, particularly in graphene, where a range of regimes are accessible by varying the electron density. In this work, a fully atomistic, device-based simulation of magnetoresistance experiments allows us to analyze both the resistance peaks and the current flow at commensurability conditions. Magnetoresistance spectra are found in excellent agreement with experiment, but we show that a semiclassical analysis, in terms of simple skipping or pinned orbits, is insufficient to fully describe the corresponding electron trajectories. Instead, a generalized mechanism in terms of states bound to individual antidots, or to groups of antidots, is required. Commensurability features are shown to arise when scattering between such states is enhanced. The emergence and suppression of commensurability peaks is explored for different antidot sizes, magnetic field strengths, and electron densities. The insights gained from our study will guide the design and optimization of future experiments with nanostructured graphene.

Journal ArticleDOI
TL;DR: The existence of ballistic transport for the Schrodinger operator with limit-periodic or quasi-periodIC potential in dimension two was proved in this paper, under certain regularity assumptions on the potential which have been used in prior work to establish the existence of an absolutely continuous component and other spectral properties.
Abstract: We prove the existence of ballistic transport for the Schrodinger operator with limit-periodic or quasi-periodic potential in dimension two. This is done under certain regularity assumptions on the potential which have been used in prior work to establish the existence of an absolutely continuous component and other spectral properties. The latter include detailed information on the structure of generalized eigenvalues and eigenfunctions. These allow one to establish the crucial ballistic lower bound through integration by parts on an appropriate extension of a Cantor set in momentum space, as well as through stationary phase arguments.