scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome 21 published in 2013"


Journal ArticleDOI
15 Aug 2013-Nature
TL;DR: Down’s syndrome is a common disorder with enormous medical and social costs, caused by trisomy for chromosome 21, and the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene, XIST (the X-inactivation gene), is tested.
Abstract: Down's syndrome is a common disorder with enormous medical and social costs, caused by trisomy for chromosome 21. We tested the concept that gene imbalance across an extra chromosome can be de facto corrected by manipulating a single gene, XIST (the X-inactivation gene). Using genome editing with zinc finger nucleases, we inserted a large, inducible XIST transgene into the DYRK1A locus on chromosome 21, in Down's syndrome pluripotent stem cells. The XIST non-coding RNA coats chromosome 21 and triggers stable heterochromatin modifications, chromosome-wide transcriptional silencing and DNA methylation to form a 'chromosome 21 Barr body'. This provides a model to study human chromosome inactivation and creates a system to investigate genomic expression changes and cellular pathologies of trisomy 21, free from genetic and epigenetic noise. Notably, deficits in proliferation and neural rosette formation are rapidly reversed upon silencing one chromosome 21. Successful trisomy silencing in vitro also surmounts the major first step towards potential development of 'chromosome therapy'.

286 citations


Journal ArticleDOI
TL;DR: The specific chromosome 21 gene products and the complexity of the mechanisms they engender that give rise to the neuroinflammatory responses noted in fetal development of the DS brain and their potential as accelerators of Alzheimer neuropathogenesis in DS are topics of this review.
Abstract: Down syndrome (DS) is the result of triplication of chromosome 21 (trisomy 21) and is the prevailing cause of mental retardation. In addition to the mental deficiencies and physical anomalies noted at birth, triplication of chromosome 21 gene products results in the neuropathological and cognitive changes of Alzheimer’s disease (AD). Mapping of the gene that encodes the precursor protein (APP) of the β-amyloid (Aβ) present in the Aβ plaques in both AD and DS to chromosome 21 was strong evidence that this chromosome 21 gene product was a principal neuropathogenic culprit in AD as well as DS. The discovery of neuroinflammatory changes, including dramatic proliferation of activated glia overexpressing a chromosome 2 gene product - the pluripotent immune cytokine interleukin-1 (IL-1) - and a chromosome 21 gene product - S100B - in the brains of fetuses, neonates, and children with DS opened the possibility that early events in Alzheimer pathogenesis were driven by cytokines. The specific chromosome 21 gene products and the complexity of the mechanisms they engender that give rise to the neuroinflammatory responses noted in fetal development of the DS brain and their potential as accelerators of Alzheimer neuropathogenesis in DS are topics of this review, particularly as they relate to development and propagation of neuroinflammation, the consequences of which are recognized clinically and neuropathologically as Alzheimer’s disease.

180 citations


Journal ArticleDOI
TL;DR: Ts21 iPSCs and neurons display unique developmental defects that are consistent with cognitive deficits in individuals with Down syndrome and may enable discovery of the underlying causes of and treatments for this disorder.
Abstract: Down syndrome (trisomy 21) is the most common genetic cause of intellectual disability, but the precise molecular mechanisms underlying impaired cognition remain unclear. Elucidation of these mechanisms has been hindered by the lack of a model system that contains full trisomy of chromosome 21 (Ts21) in a human genome that enables normal gene regulation. To overcome this limitation, we created Ts21-induced pluripotent stem cells (iPSCs) from two sets of Ts21 human fibroblasts. One of the fibroblast lines had low level mosaicism for Ts21 and yielded Ts21 iPSCs and an isogenic control that is disomic for human chromosome 21 (HSA21). Differentiation of all Ts21 iPSCs yielded similar numbers of neurons expressing markers characteristic of dorsal forebrain neurons that were functionally similar to controls. Expression profiling of Ts21 iPSCs and their neuronal derivatives revealed changes in HSA21 genes consistent with the presence of 50% more genetic material as well as changes in non-HSA21 genes that suggested compensatory responses to oxidative stress. Ts21 neurons displayed reduced synaptic activity, affecting excitatory and inhibitory synapses equally. Thus, Ts21 iPSCs and neurons display unique developmental defects that are consistent with cognitive deficits in individuals with Down syndrome and may enable discovery of the underlying causes of and treatments for this disorder.

161 citations


Journal ArticleDOI
TL;DR: It is suggested that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences, and may serve as a cradle for adaptive evolution in this and other fungal pathogens.
Abstract: Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in this and other fungal pathogens.

145 citations


Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: It is suggested that USP16 has an important role in antagonizing the self-renewal and/or senescence pathways in Down’s syndrome and could serve as an attractive target to ameliorate some of the associated pathologies.
Abstract: Down's syndrome results from full or partial trisomy of chromosome 21. However, the consequences of the underlying gene-dosage imbalance on adult tissues remain poorly understood. Here we show that in Ts65Dn mice, which are trisomic for 132 genes homologous to genes on human chromosome 21, triplication of Usp16 reduces the self-renewal of haematopoietic stem cells and the expansion of mammary epithelial cells, neural progenitors and fibroblasts. In addition, Usp16 is associated with decreased ubiquitination of Cdkn2a and accelerated senescence in Ts65Dn fibroblasts. Usp16 can remove ubiquitin from histone H2A on lysine 119, a critical mark for the maintenance of multiple somatic tissues. Downregulation of Usp16, either by mutation of a single normal Usp16 allele or by short interfering RNAs, largely rescues all of these defects. Furthermore, in human tissues overexpression of USP16 reduces the expansion of normal fibroblasts and postnatal neural progenitors, whereas downregulation of USP16 partially rescues the proliferation defects of Down's syndrome fibroblasts. Taken together, these results suggest that USP16 has an important role in antagonizing the self-renewal and/or senescence pathways in Down's syndrome and could serve as an attractive target to ameliorate some of the associated pathologies.

123 citations


Journal ArticleDOI
15 Apr 2013-PLOS ONE
TL;DR: This study presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into theeffects of radiation damage on DNA, and overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis.
Abstract: Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439.

99 citations


Journal ArticleDOI
TL;DR: Examination of whole-genome DNA methylation in buccal epithelial cells of 10 adults with DS and 10 controls indicated that both Trisomy 21 and cognitive impairment were associated with distinct patterns ofDNA methylation.
Abstract: Background The presence of an extra whole or part of chromosome 21 in people with Down syndrome (DS) is associated with multiple neurological changes, including pathological aging that often meets the criteria for Alzheimer’s Disease (AD). In addition, trisomies have been shown to disrupt normal epigenetic marks across the genome, perhaps in response to changes in gene dosage. We hypothesized that trisomy 21 would result in global epigenetic changes across all participants, and that DS patients with cognitive impairment would show an additional epigenetic signature.

84 citations


Journal ArticleDOI
TL;DR: DNA methylation perturbation was conserved in DS placenta villi and in adult DS peripheral blood leukocytes, and enriched for genes known to be causally associated with DS phenotypes, suggesting that global epigenetic changes may occur early in development and contribute toDS phenotypes.
Abstract: Down syndrome (DS), commonly caused by an extra copy of chromosome 21 (chr21), occurs in approximately one out of 700 live births. Precisely how an extra chr21 causes over 80 clinically defined phenotypes is not yet clear. Reduced representation bisulfite sequencing (RRBS) analysis at single base resolution revealed DNA hypermethylation in all autosomes in DS samples. We hypothesize that such global hypermethylation may be mediated by down-regulation of TET family genes involved in DNA demethylation, and down-regulation of REST/NRSF involved in transcriptional and epigenetic regulation. Genes located on chr21 were up-regulated by an average of 53% in DS compared to normal villi, while genes with promoter hypermethylation were modestly down-regulated. DNA methylation perturbation was conserved in DS placenta villi and in adult DS peripheral blood leukocytes, and enriched for genes known to be causally associated with DS phenotypes. Our data suggest that global epigenetic changes may occur early in development and contribute to DS phenotypes.

82 citations


Journal ArticleDOI
TL;DR: This study aimed to provide an individualized assessment of fetaltrisomy 21 and trisomy 18 status for twin pregnancies by maternal plasma DNA sequencing.
Abstract: Objective This study aimed to provide an individualized assessment of fetal trisomy 21 and trisomy 18 status for twin pregnancies by maternal plasma DNA sequencing. Method Massively parallel sequencing was performed on the plasma/serum DNA libraries of eight twin pregnancies and 11 singleton pregnancies. The apparent fractional fetal DNA concentrations between genomic regions were assessed to determine the zygosities of the twin pregnancies and to calculate the fetal DNA concentrations of each individual member of dizygotic twin pairs. Z-scores were determined for the detection of trisomy 18 and trisomy 21. Results Circulating DNA sequencing showed elevated chromosome 21 representation in one set of twins and elevated chromosome 18 representation in another pair of twins. Apparent fractional fetal DNA concentration analysis revealed both sets of twins to be dizygotic. The fractional fetal DNA concentrations for each individual fetus of the dizygotic twin pregnancies were determined. Incorporating the information about the fetal DNA fraction, we ascertained that each fetus contributed adequate amounts of DNA into the maternal circulation for the aneuploidy test result to be interpreted with confidence. Conclusion Noninvasive prenatal assessment of fetal chromosomal aneuploidy for twin pregnancies can be achieved with the use of massively parallel sequencing of cell-free DNA in maternal blood. © 2013 John Wiley & Sons, Ltd.

78 citations


Journal ArticleDOI
TL;DR: It is proposed that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21, in addition to a yet-unidentified genetic variation in the rest of the genome that may contribute to this complex genetic architecture.
Abstract: Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome 21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or environmental factors could contribute to the CHD risk. Here we report genomic variations that in concert with trisomy 21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21-specific association studies revealed rs2832616 and rs1943950 as CHD risk alleles (adjusted genotypic P-values <0.05). These signals were confirmed in a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that are located within the previously identified CHD region on chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR ≤ 0.05). One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295) gene, highlighting the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yet-unidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture.

69 citations


Journal ArticleDOI
TL;DR: The latent regulatory potential of the repetitive human genome is revealed and the species specificity of mechanisms that control it is illustrated with a transchromosomic mouse strain.

Journal ArticleDOI
TL;DR: The behavior and molecular features of de novo centromere formation in the Dp3a chromosome are defined, which may shed light on the initiation of new centromeres sites during evolution.
Abstract: The centromere is the part of the chromosome that organizes the kinetochore, which mediates chromosome movement during mitosis and meiosis. A small fragment from chromosome 3, named Duplication 3a (Dp3a), was described from UV-irradiated materials by Stadler and Roman in the 1940s [Stadler LJ, Roman H (1948) Genetics 33(3):273–303]. The genetic behavior of Dp3a is reminiscent of a ring chromosome, but fluoresecent in situ hybridization detected telomeres at both ends, suggesting a linear structure. This small chromosome has no detectable canonical centromeric sequences, but contains a site with protein features of functional centromeres such as CENH3, the centromere specific H3 histone variant, and CENP-C, a foundational kinetochore protein, suggesting the de novo formation of a centromere on the chromatin fragment. To examine the sequences associated with CENH3, chromatin immunoprecipitation was carried out with anti-CENH3 antibodies using material from young seedlings with and without the Dp3a chromosome. A novel peak was detected from the ChIP-Sequencing reads of the Dp3a sample. The peak spanned 350 kb within the long arm of chromosome 3 covering 22 genes. Collectively, these results define the behavior and molecular features of de novo centromere formation in the Dp3a chromosome, which may shed light on the initiation of new centromere sites during evolution.

Journal ArticleDOI
10 Jul 2013-PLOS ONE
TL;DR: It is found that differences in the centromeric sequence may explain certain aspects of chromosome instability, and even under normal conditions, individual chromosomes in a genome are subject to different levels of pressure in chromosome loss (or gain).
Abstract: Chromosome instability is a key component of cancer progression and many heritable diseases. Understanding why some chromosomes are more unstable than others could provide insight into understanding genome integrity. Here we systematically investigate the spontaneous chromosome loss for all sixteen chromosomes in Saccharomyces cerevisiae in order to elucidate the mechanisms underlying chromosome instability. We observed that the stability of different chromosomes varied more than 100-fold. Consistent with previous studies on artificial chromosomes, chromosome loss frequency was negatively correlated to chromosome length in S. cerevisiae diploids, triploids and S. cerevisiae-S. bayanus hybrids. Chromosome III, an equivalent of sex chromosomes in budding yeast, was found to be the most unstable chromosome among all cases examined. Moreover, similar instability was observed in chromosome III of S. bayanus, a species that diverged from S. cerevisiae about 20 million years ago, suggesting that the instability is caused by a conserved mechanism. Chromosome III was found to have a highly relaxed spindle checkpoint response in the genome. Using a plasmid stability assay, we found that differences in the centromeric sequence may explain certain aspects of chromosome instability. Our results reveal that even under normal conditions, individual chromosomes in a genome are subject to different levels of pressure in chromosome loss (or gain).

Journal ArticleDOI
08 Aug 2013-Blood
TL;DR: This ERG/Gata1s transgenic mouse model uncovers an essential role for the N terminus of Gata1 in erythropoiesis and the antagonistic role of ERG in fetal erythroid differentiation and survival.

Journal ArticleDOI
TL;DR: It is proposed that the occurrence of such tissue-specific T21 mosaicism may have important ramifications for the understanding of the pathogenesis, prognosis and treatment of medical problems shared between people with DS and those in the general non-DS population.
Abstract: Ever increasing sophistication in the application of new analytical technology has revealed that our genomes are much more fluid than was contemplated only a few years ago. More specifically, this concerns interindividual variation in copy number (CNV) of structural chromosome aberrations, i.e. microdeletions and microduplications. It is important to recognize that in this context, we still lack basic knowledge on the impact of the CNV in normal cells from individual tissues, including that of whole chromosomes (aneuploidy). Here, we highlight this challenge by the example of the very first chromosome aberration identified in the human genome, i.e. an extra chromosome 21 (trisomy 21, T21), which is causative of Down syndrome (DS). We consider it likely that most, if not all, of us are T21 mosaics, i.e. everyone carries some cells with an extra chromosome 21, in some tissues. In other words, we may all have a touch of DS. We further propose that the occurrence of such tissue-specific T21 mosaicism may have important ramifications for the understanding of the pathogenesis, prognosis and treatment of medical problems shared between people with DS and those in the general non-DS population.

Journal ArticleDOI
TL;DR: It is suggested that dosage of DYRK1A and DSCR1 is critical for proper neurogenesis through NFATc and provide a potential mechanism to explain the neurodevelopmental defects in DS.
Abstract: Down's syndrome (DS), a major genetic cause of mental retardation, arises from triplication of genes on human chromosome 21. Here we show that DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) and DSCR1 (DS critical region 1), two genes lying within human chromosome 21 and encoding for a serine/threonine kinase and calcineurin regulator, respectively, are expressed in neural progenitors in the mouse developing neocortex. Increasing the dosage of both proteins in neural progenitors leads to a delay in neuronal differentiation, resulting ultimately in alteration of their laminar fate. This defect is mediated by the cooperative actions of DYRK1A and DSCR1 in suppressing the activity of the transcription factor NFATc. In Ts1Cje mice, a DS mouse model, dysregulation of NFATc in conjunction with increased levels of DYRK1A and DSCR1 was observed. Furthermore, counteracting the dysregulated pathway ameliorates the delayed neuronal differentiation observed in Ts1Cje mice. In sum, our findings suggest that dosage of DYRK1A and DSCR1 is critical for proper neurogenesis through NFATc and provide a potential mechanism to explain the neurodevelopmental defects in DS.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the neural retina is thicker in DS individuals than in the normal population and a similar thicknessing specifically affecting the inner part of the retina was observed in a trisomic model of DS, the Ts65Dn mouse.
Abstract: Down syndrome (DS) results from the triplication of approximately 300 human chromosome 21 (Hsa21) genes and affects almost all body organs. Children with DS have defects in visual processing that may have a negative impact on their daily life and cognitive development. However, there is little known about the genes and pathogenesis underlying these defects. Here, we show morphometric in vivo data indicating that the neural retina is thicker in DS individuals than in the normal population. A similar thickening specifically affecting the inner part of the retina was also observed in a trisomic model of DS, the Ts65Dn mouse. Increased retinal size and cellularity in this model correlated with abnormal retinal function and resulted from an impaired caspase-9-mediated apoptosis during development. Moreover, we show that mice bearing only one additional copy of Dyrk1a have the same retinal phenotype as Ts65Dn mice and normalization of Dyrk1a gene copy number in Ts65Dn mice completely rescues both, morphological and functional phenotypes. Thus, triplication of Dyrk1a is necessary and sufficient to cause the retinal phenotype described in the trisomic model. Our data demonstrate for the first time the implication of DYRK1A overexpression in a developmental alteration of the central nervous system associated with DS, thereby providing insights into the aetiology of neurosensorial dysfunction in a complex disease.

Journal ArticleDOI
TL;DR: The W chromatin of highly polyploid cells from the flour moth, Ephestia kuehniella, is microdissected and used Roche/454 and Sanger sequencing to generate 72.6 Mbp of DNA sequence, which allowed us to determine constituent families of transposable elements, microsatellites, and recent insertion sites of mitochondrial DNA.
Abstract: Y and W chromosomes have mostly been excluded from whole genome sequencing projects. Due to the high amount of repetitive sequences they are 'difficult' to assemble and therefore need special treatment in the form of, e.g. adapted assembly programs, a range of different libraries, and accurate maps, if possible. A minimum requirement for these approaches is pure template DNA. We therefore microdissected the W chromatin of highly polyploid cells from the flour moth, Ephestia kuehniella, and used Roche/454 and Sanger sequencing to generate 72.6 Mbp of DNA sequence. Nominal coverage was 4.3× of the 16.7 Mbp of W chromosomal DNA. We used these data to assess the genetic content of the W chromosome. This approach allowed us to determine constituent families of transposable elements, microsatellites, and recent insertion sites of mitochondrial DNA. However, no conventional protein-coding gene has yet been found. The sequence collection is a rich source for the definition of W-specific PCR markers and the reconstruction of W chromosome loci, as a step towards full reconstruction of the chromosome.

Journal ArticleDOI
TL;DR: Using comparative genomics, transcriptomics and proteomics, the fate of the transcripts and proteins coded on the extra chromosomes as well as the general response to aneuploidy in human cells are analyzed.
Abstract: The presence of even one extra chromosome severely impairs cellular growth. This effect of aneuploidy (a term describing chromosome numbers deviating from multiples of haploid chromosome content) has been observed in many different organisms, from yeast to humans. Accordingly, abnormal karyotypes are detected in nearly 30% of spontaneously aborted embryos. The rarely surviving infants, such as with trisomy of chromosome 21, are severely handicapped. The causes remain enigmatic, although recent studies exploiting yeast and mouse models provided first glimpses of the imbalanced inner life of aneuploid cells. Using comparative genomics, transcriptomics and proteomics we have analyzed the fate of the transcripts and proteins coded on the extra chromosomes as well as the general response to aneuploidy in human cells.

Journal ArticleDOI
TL;DR: A cis-acting locus on human chromosome 6 that controls this replication-timing program that encodes a large intergenic non-coding RNA gene named Asynchronous replication and Autosomal RNA on chromosome 6, or ASAR6, which results in delayed replication, delayed mitotic chromosome condensation, and activation of the previously silent alleles of mono-allelic genes on chromosomes 6.
Abstract: Mammalian chromosomes initiate DNA replication at multiple sites along their length during each S phase following a temporal replication program. The majority of genes on homologous chromosomes replicate synchronously. However, mono-allelically expressed genes such as imprinted genes, allelically excluded genes, and genes on female X chromosomes replicate asynchronously. We have identified a cis-acting locus on human chromosome 6 that controls this replication-timing program. This locus encodes a large intergenic non-coding RNA gene named Asynchronous replication and Autosomal RNA on chromosome 6, or ASAR6. Disruption of ASAR6 results in delayed replication, delayed mitotic chromosome condensation, and activation of the previously silent alleles of mono-allelic genes on chromosome 6. The ASAR6 gene resides within an ∼1.2 megabase domain of asynchronously replicating DNA that is coordinated with other random asynchronously replicating loci along chromosome 6. In contrast to other nearby mono-allelic genes, ASAR6 RNA is expressed from the later-replicating allele. ASAR6 RNA is synthesized by RNA Polymerase II, is not polyadenlyated, is restricted to the nucleus, and is subject to random mono-allelic expression. Disruption of ASAR6 leads to the formation of bridged chromosomes, micronuclei, and structural instability of chromosome 6. Finally, ectopic integration of cloned genomic DNA containing ASAR6 causes delayed replication of entire mouse chromosomes.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of COL6A3 in the development of muscle hypotonia and Congenital Heart Disease (CHD) in individuals with Down syndrome.
Abstract: Down syndrome (DS), the principal cause for intellectual disability, is also associated with hormonal, immunological, and gastrointestinal abnormalities. Muscle hypotonia (MH) and congenital heart diseases (CHD) are also frequently observed. Collagen molecules are essential components for maintaining muscle integrity and are formed by the assembly of three chains, alpha 1-3. The type VI collagen is crucial for cardiac as well as skeletal muscles. The COL 1 (VI) and 2 (VI) chains are encoded by genes located at the 21st chromosome and are expected to have higher dosage in individuals with DS. The  3 (VI) chain is encoded by the COL6A3 located at the chromosome 2. We hypothesized that apart from COL6A1 and COL6A2, COL6A3 may also have some role in the MH of subjects with DS. To find out the relevance of COL6A3 in DS associated MH and CHD, we genotyped two SNPs in COL6A3, rs2270669 and rs2270668, in individuals with DS. Subjects with DS were recruited based on the Diagnostic and Statistical Manual for Mental Disorders-IV and having trisomy of the 21st chromosome. Parents of individuals with DS and ethnically matched controls were enrolled for comparison. Informed written consent was obtained for participation. Peripheral blood was used for isolation of genomic DNA. Target genetic loci were studied by DNA sequence analysis. Data obtained was subjected to population- as well as family-based statistical analysis. rs2270668 was found to be nonpolymorphic in the studied population. rs2270669 showed significant association of the ‘C’ allele and ‘CC’ genotype with DS probands having MH (P=0.02). Computational analysis showed that rs2270669 may induce structural and functional alterations in the COL 3 (VI). Interaction of COL3 (VI) with different proteins, crucial for muscle integrity, was also noticed by computational methods. This pioneering study on COL6A3 with DS related MH thus indicates that rs2270669 ‘C’ could be considered as a risk factor for DS related MH.

Book ChapterDOI
TL;DR: Step-by-step protocols of CP and CCP in plant species including chromosome preparation, BAC DNA labeling, and multicolor FISH are described including Extended pachytene chromosomes provide the highest resolution of CP in plants.
Abstract: Chromosome painting (CP) refers to visualization of large chromosome regions, entire chromosome arms, or entire chromosomes via fluorescence in situ hybridization (FISH). For CP in plants, contigs of chromosome-specific bacterial artificial chromosomes (BAC) from the target species or from a closely related species (comparative chromosome painting, CCP) are typically applied as painting probes. Extended pachytene chromosomes provide the highest resolution of CP in plants. CP enables identification and tracing of particular chromosome regions and/or entire chromosomes throughout all meiotic stages as well as corresponding chromosome territories in premeiotic interphase nuclei. Meiotic pairing and structural chromosome rearrangements (typically inversions and translocations) can be identified by CP. Here, we describe step-by-step protocols of CP and CCP in plant species including chromosome preparation, BAC DNA labeling, and multicolor FISH.

Journal ArticleDOI
TL;DR: Gene ontology enrichment analyses revealed that a set of abnormally expressed microRNAs were involved in the regulation of transcription, gene expression, cellular biosynthetic process and nucleic acid metabolic process, which provided a considerable insight into understanding the expression characteristic of micro RNAs in the DS fetal CBMCs.
Abstract: Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21) and is associated with numerous deleterious phenotypes, including cognitive impairment, childhood leukemia and immune defects. Five Hsa21‑derived microRNAs (i.e., hsa-miR-99a, let-7c, miR-125b-2, miR-155 and miR-802) are involved in variable phenotypes of DS. However, the changes involved in the genome-wide microRNA expression of DS fetuses under the influence of trisomy 21 have yet to be determined. To investigate the expression characteristic of microRNAs during the development of DS fetuses and identify whether another microRNA gene resides in the Hsa21, Illumina high-throughput sequencing technology was employed to comprehensively characterize the microRNA expression profiles of the DS and normal fetal cord blood mononuclear cells (CBMCs). In total, 149 of 395 identified microRNAs were significantly differentially expressed (fold change >2.0 and P<0.001) and 2 of 181 candidate novel microRNAs were identified as residing within the DS critical region of human chromosome 21 (chr21q22.2‑22.3). Additionally, 7 of 14 Hsa21-derived microRNAs were detected, although not all seven were overexpressed in DS CBMCs compared with the control. Gene ontology enrichment analyses revealed that a set of abnormally expressed microRNAs were involved in the regulation of transcription, gene expression, cellular biosynthetic process and nucleic acid metabolic process. Significantly, most of the mRNA targets in these categories were associated with immune modulation (i.e., SOD1, MXD4, PBX1, BCLAF1 and FOXO1). Findings of the present study provided a considerable insight into understanding the expression characteristic of microRNAs in the DS fetal CBMCs. To the best of our knowledge, this is the first study to examine genome-wide microRNA expression profiles in the DS fetus. Differentially expressed microRNAs may be involved in hemopoietic abnormalities and the immune defects of DS fetuses and newborns.

Journal ArticleDOI
TL;DR: The most extensive proteome of amniocyte and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21.
Abstract: Down syndrome (DS), caused by an extra copy of chromosome 21, affects 1 in 750 live births and is characterized by cognitive impairment and a constellation of congenital defects. Currently, little is known about the molecular pathogenesis and no direct genotype-phenotype relationship has yet been confirmed. Since DS amniocytes are expected to have a distinct biological behaviour compared to normal amniocytes, we hypothesize that relative quantification of proteins produced from trisomy and euploid (chromosomally normal) amniocytes will reveal dysregulated molecular pathways. Chromosomally normal- and Trisomy 21-amniocytes were quantitatively analyzed by using Stable Isotope Labeling of Amino acids in Cell culture and tandem mass spectrometry. A total of 4919 unique proteins were identified from the supernatant and cell lysate proteome. More specifically, 4548 unique proteins were identified from the lysate, and 91% of these proteins were quantified based on MS/MS spectra ratios of peptides containing isotope-labeled amino acids. A total of 904 proteins showed significant differential expression and were involved in 25 molecular pathways, each containing a minimum of 16 proteins. Sixty of these proteins consistently showed aberrant expression from trisomy 21 affected amniocytes, indicating their potential role in DS pathogenesis. Nine proteins were analyzed with a multiplex selected reaction monitoring assay in an independent set of Trisomy 21-amniocyte samples and two of them (SOD1 and NES) showed a consistent differential expression. The most extensive proteome of amniocytes and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21.

Journal ArticleDOI
Yong Xu, Wuxian Li, Xueyan Liu1, Hong Chen1, Kuibi Tan1, Yuyu Chen1, Zhiguang Tu, Yong Dai1 
10 Nov 2013-Gene
TL;DR: The results indicated that these abnormally expressed miRNAs might be associated with the mechanisms that trisomy 21 results in dysregulation of disomic genes and involved in the immunological defects seen in DS.

Journal ArticleDOI
11 Oct 2013-Genetica
TL;DR: The karyotype of the thymallid fish is thought to experienced numerous pericentric inversions and internal telomeric sites observed at the pericentromeric regions of the six European grayling metacentric chromosomes are likely relics of the these rearrangements.
Abstract: The chromosomal characteristics, locations and variations of the C-band positive heterochromatin and telomeric DNA sequences were studied in the European grayling karyotype (Thymallus thymallus, Salmonidae) using conventional C-banding, endonucleases digestion banding, silver nitrate (AgNO3), chromomycin A3 and 4′,6-diamidino-2-phenylindole staining techniques as well as fluorescence in situ hybridization (FISH) and primed in situ labelling. Original data on the chromosomal distribution of segments resistant to AluI restriction endonuclease and identification of the C-banded heterochromatin presented here have been used to characterize the grayling karyotype polymorphism. Structural and length polymorphism of the chromosome 21 showing a conspicuous heterochromatin block adjacent to the centromere seems to be the result of the deletion and inversion. Two pairs of nuclear organizer regions (NOR)-bearing chromosomes were found to be polymorphic in size and displaying several distinct forms. FISH with telomeric peptide nucleic acid probe enabled recognition of the conservative telomeric DNA sequences. The karyotype of the thymallid fish is thought to experienced numerous pericentric inversions and internal telomeric sites (ITSs) observed at the pericentromeric regions of the six European grayling metacentric chromosomes are likely relics of the these rearrangements. None of the ITS sites matched either chromosome 21 or NOR bearing chromosomes.

Journal ArticleDOI
TL;DR: The detailed characterization of the DFNY1 Y chromosome is reported and it is suggested that a third copy of one or more genes from the shared segment of chromosome 1 might be responsible for the hearing-loss phenotype.
Abstract: A single Mendelian trait has been mapped to the human Y chromosome: Y-linked hearing impairment. The molecular basis of this disorder is unknown. Here, we report the detailed characterization of the DFNY1 Y chromosome and its comparison with a closely related Y chromosome from an unaffected branch of the family. The DFNY1 chromosome carries a complex rearrangement, including duplication of several noncontiguous segments of the Y chromosome and insertion of ∼160 kb of DNA from chromosome 1, in the pericentric region of Yp. This segment of chromosome 1 is derived entirely from within a known hearing impairment locus, DFNA49. We suggest that a third copy of one or more genes from the shared segment of chromosome 1 might be responsible for the hearing-loss phenotype.

Journal ArticleDOI
14 Aug 2013-PLOS ONE
TL;DR: In this paper, a chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat-Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. intermedium.
Abstract: In this study, chromosome painting was developed and used to identify alien chromosomes in TAi-27, a wheat--Thinopyrum intermedium addition line, and the chromosomes of the three different genomes of Th. Intermedium. The smallest alien chromosome of TAi-27 was microdissected and its DNA amplified by DOP-PCR was used as a probe to hybridize with metaphase chromosomes of TAi-27 and Th. intermedium. Results showed that hybridization signals were observed in all regions of a pair of the smallest alien chromosomes and the pericentromeric area of another pair of alien chromosomes in TAi-27, indicating that the probe from microdissected chromosome is species specific. In Th. intermedium, 14 chromosomes had wide and strong hybridization signals distributed mainly on the pericentromere area and 9 chromosomes with narrow and weak signals on the pericentromere area. The remaining chromosomes displayed a very weak or no signal. Sequential FISH/GISH on Th. intermedium chromosomes using the DNAs of microdissected chromosome, Pseudoroegneria spicata (St genome) and pDbH12 (a J(s) genome specific probe) as the probes indicated that the microdissected chromosome belonged to the St genome, three genomes (J(s) , J and St) in Th. intermedium could be distinguished, in which there is no hybridization signal on J genome that is similar to the genome of Th. bessarabicum. Our results showed that the smallest alien chromosomes may represent a truncated chromosome and the repetitive sequence distribution might be similar in different chromosomes within the St genome. However, the repetitive sequence distributions are different within the J(s) genome, within a single chromosome, and among different genomes in Th. intermedium. Our results suggested that chromosome painting could be feasible in some plants and useful in detecting chromosome variation and repetitive sequence distribution in different genomes of polyploidy plants, which is helpful for understanding the evolution of different genomes in polyploid plants.

Journal ArticleDOI
01 Jan 2013
TL;DR: Analysis showed that the number of children born with Down’s syndrome, from 2000 to 2010, was not decreasing among the Kosova Albanian population, and Down syndrome resulted by an extra free chromosome 21 is the most common genetic cause for that condition.
Abstract: CONFLICT OF INTEREST: none declared. AIM: The aim of this research was to ascertain the frequency of three basic cytogenetical types of Down syndrome among Kosova Albanian population and to evaluate the maternal age effect on the frequency of births of children with Down syndrome. METHODS: Cytogenetics diagnosis has been made according to the standard method of Moorhead and Seabright. RESULTS: In the time period 2000-2010 cytogenetics diagnosis of overall 305 children with Down syndrome has been realized. Of which in 285 children (93.4%) were found free trisomy 21 (regular type), and in three other children (~1.0%) were detected mosaic trisomy 21. Translocation trisomy 21 was detected in 17 children (5.6%), of which in 14 children it occurred de novo translocation, whereas in 3 other children translocation has been inherited by a parent translocation carrier. The highest number of children with Trisomy 21 due to translocation was caused by Robertsonian translocation created by a fusion of two homologous chromosomes 21 (3.3%). Analysis showed that the number of children born with Down's syndrome, from 2000 to 2010, was not decreasing among the Kosova Albanian population. CONCLUSION: Down syndrome resulted by an extra free chromosome 21 is the most common genetic cause for that condition. Robertsonian translocations present in Down syndrome children often are de novo or inherited from a carrier parent with translocation.

Journal ArticleDOI
06 May 2013-PLOS ONE
TL;DR: The results reveal the involvement of DSCAM as a HSCR susceptibility locus, both in Down syndrome and HSCr isolated cases, and the chromosome-scan dose-dependent methodology used herein as a mean to map the genetic bases of other sub-phenotypes both in down syndrome and other aneuploidies.
Abstract: Hirschsprung disease (HSCR) genetics is a paradigm for the study and understanding of multigenic disorders. Association between Down syndrome and HSCR suggests that genetic factors that predispose to HSCR map to chromosome 21. To identify these additional factors, we performed a dose-dependent association study on chromosome 21 in Down syndrome patients with HSCR. Assessing 10,895 SNPs in 26 Caucasian cases and their parents led to identify two associated SNPs (rs2837770 and rs8134673) at chromosome-wide level. Those SNPs, which were located in intron 3 of the DSCAM gene within a 19 kb-linkage disequilibrium block region were in complete association and are consistent with DSCAM expression during enteric nervous system development. We replicated the association of HSCR with this region in an independent sample of 220 non-syndromic HSCR Caucasian patients and their parents. At last, we provide the functional rationale to the involvement of DSCAM by network analysis and assessment of SOX10 regulation. Our results reveal the involvement of DSCAM as a HSCR susceptibility locus, both in Down syndrome and HSCR isolated cases. This study further ascertains the chromosome-scan dose-dependent methodology used herein as a mean to map the genetic bases of other sub-phenotypes both in Down syndrome and other aneuploidies.