scispace - formally typeset
Search or ask a question

Showing papers on "Chromothripsis published in 2013"


Journal ArticleDOI
25 Apr 2013-Cell
TL;DR: In this paper, the genesis of genomic rearrangements, including abundant DNA translocations and deletions that arise in a highly interdependent manner, was modeled and shown to induce considerable genomic derangement over relatively few events in prostate cancer and other neoplasms, supporting a model of punctuated cancer evolution.

1,146 citations


Journal ArticleDOI
TL;DR: The spectrum of genetic alterations in meningiomas is defined and potential therapeutic targets are identified to identify and validate somatic genetic alterations.
Abstract: Meningiomas are the most common primary nervous system tumor. The tumor suppressor NF2 is disrupted in approximately half of all meningiomas, but the complete spectrum of genetic changes remains undefined. We performed whole-genome or whole-exome sequencing on 17 meningiomas and focused sequencing on an additional 48 tumors to identify and validate somatic genetic alterations. Most meningiomas had simple genomes, with fewer mutations, rearrangements and copy-number alterations than reported in other tumors in adults. However, several meningiomas harbored more complex patterns of copy-number changes and rearrangements, including one tumor with chromothripsis. We confirmed focal NF2 inactivation in 43% of tumors and found alterations in epigenetic modifiers in an additional 8% of tumors. A subset of meningiomas lacking NF2 alterations harbored recurrent oncogenic mutations in AKT1 (p.Glu17Lys) and SMO (p.Trp535Leu) and exhibited immunohistochemical evidence of activation of these pathways. These mutations were present in therapeutically challenging tumors of the skull base and higher grade. These results begin to define the spectrum of genetic alterations in meningiomas and identify potential therapeutic targets.

499 citations


Journal ArticleDOI
14 Mar 2013-Cell
TL;DR: Conceptual criteria for the inference of chromothripsis is described, based on ruling out the alternative hypothesis that stepwise rearrangements occurred, and it is suggested that robust means of inference may facilitate in-depth studies on the impact of, and the mechanisms underlying, chromothRIpsis.

453 citations


Journal ArticleDOI
TL;DR: This study performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile, providing the first detailed account of genomic variants in the HeLa genome.
Abstract: HeLa is the most widely used model cell line for studying human cellular and molecular biology. To date, no genomic reference for this cell line has been released, and experiments have relied on the human reference genome. Effective design and interpretation of molecular genetic studies performed using HeLa cells require accurate genomic information. Here we present a detailed genomic and transcriptomic characterization of a HeLa cell line. We performed DNA and RNA sequencing of a HeLa Kyoto cell line and analyzed its mutational portfolio and gene expression profile. Segmentation of the genome according to copy number revealed a remarkably high level of aneuploidy and numerous large structural variants at unprecedented resolution. Some of the extensive genomic rearrangements are indicative of catastrophic chromosome shattering, known as chromothripsis. Our analysis of the HeLa gene expression profile revealed that several pathways, including cell cycle and DNA repair, exhibit significantly different expression patterns from those in normal human tissues. Our results provide the first detailed account of genomic variants in the HeLa genome, yielding insight into their impact on gene expression and cellular function as well as their origins. This study underscores the importance of accounting for the strikingly aberrant characteristics of HeLa cells when designing and interpreting experiments, and has implications for the use of HeLa as a model of human biology.

403 citations


Journal ArticleDOI
15 Aug 2013-Blood
TL;DR: A whole-genome-sequencing-based perspective ofDLBCL mutational complexity is provided by characterizing 40 de novo DLBCL cases and 13 cell lines and combining these data with DNA copy number analysis and RNA-seq from an extended cohort of 96 cases, which uncovered new gene targets of recurrent somatic point mutations and genes that are targeted by focal somatic deletions in this disease.

376 citations


Journal ArticleDOI
TL;DR: Chromosome shattering and reassembly resembling chromothripsis is a major cause of chromosomal abnormalities in uterine leiomyomas and it is proposed that tumorigenesis occurs when tissue-specific tumor-promoting changes are formed through these events.
Abstract: Background Uterine leiomyomas are benign but affect the health of millions of women. A better understanding of the molecular mechanisms involved may provide clues to the prevention and treatment of these lesions. Methods We performed whole-genome sequencing and gene-expression profiling of 38 uterine leiomyomas and the corresponding myometrium from 30 women. Results Identical variants observed in some separate tumor nodules suggested that these nodules have a common origin. Complex chromosomal rearrangements resembling chromothripsis were a common feature of leiomyomas. These rearrangements are best explained by a single event of multiple chromosomal breaks and random reassembly. The rearrangements created tissue-specific changes consistent with a role in the initiation of leiomyoma, such as translocations of the HMGA2 and RAD51B loci and aberrations at the COL4A5–COL4A6 locus, and occurred in the presence of normal TP53 alleles. In some cases, separate events had occurred more than once in single tumor-c...

268 citations


Journal ArticleDOI
TL;DR: The impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally is considered and current models for underlying mechanisms are summarized.
Abstract: Recent genome sequencing studies have identified several classes of complex genomic rearrangements that appear to be derived from a single catastrophic event. These discoveries identify ways that genomes can be altered in single large jumps rather than by many incremental steps. Here we compare and contrast these phenomena and examine the evidence that they arise "all at once." We consider the impact of massive chromosomal change for the development of diseases such as cancer and for evolution more generally. Finally, we summarize current models for underlying mechanisms and discuss strategies for testing these models.

225 citations


Journal ArticleDOI
TL;DR: The level of mutagenesis associated with DNA synthesis in BIR is significantly higher than during normal replication, which makes BIR a likely pathway to promote bursts of genetic changes that fuel cancer progression and evolution.

169 citations


Journal ArticleDOI
TL;DR: These results are inconsistent with replication-based models of CGR genesis and strongly argue that nonhomologous repair of concurrently arising DNA double-strand breaks is the predominant mechanism underlying complex cancer genome rearrangements.
Abstract: Tumor genomes are generally thought to evolve through a gradual accumulation of mutations, but the observation that extraordinarily complex rearrangements can arise through single mutational events suggests that evolution may be accelerated by punctuated changes in genome architecture. To assess the prevalence and origins of complex genomic rearrangements (CGRs), we mapped 6179 somatic structural variation breakpoints in 64 cancer genomes from seven tumor types and screened for clusters of three or more interconnected breakpoints. We find that complex breakpoint clusters are extremely common: 154 clusters comprise 25% of all somatic breakpoints, and 75% of tumors exhibit at least one complex cluster. Based on copy number state profiling, 63% of breakpoint clusters are consistent with being CGRs that arose through a single mutational event. CGRs have diverse architectures including focal breakpoint clusters, large-scale rearrangements joining clusters from one or more chromosomes, and staggeringly complex chromothripsis events. Notably, chromothripsis has a significantly higher incidence in glioblastoma samples (39%) relative to other tumor types (9%). Chromothripsis breakpoints also show significantly elevated intra-tumor allele frequencies relative to simple SVs, which indicates that they arise early during tumorigenesis or confer selective advantage. Finally, assembly and analysis of 4002 somatic and 6982 germline breakpoint sequences reveal that somatic breakpoints show significantly less microhomology and fewer templated insertions than germline breakpoints, and this effect is stronger at CGRs than at simple variants. These results are inconsistent with replication-based models of CGR genesis and strongly argue that nonhomologous repair of concurrently arising DNA double-strand breaks is the predominant mechanism underlying complex cancer genome rearrangements.

167 citations


Journal ArticleDOI
TL;DR: An algorithm for detecting regions in which the copy number oscillates rapidly between fixed levels, indicative of chromothripsis is developed, and this comprehensive view of copy number alterations provides a framework for understanding the functional significance of various genomic alterations in cancer genomes.
Abstract: A large database of copy number profiles from cancer genomes can facilitate the identification of recurrent chromosomal alterations that often contain key cancer-related genes. It can also be used to explore low-prevalence genomic events such as chromothripsis. In this study, we report an analysis of 8227 human cancer copy number profiles obtained from 107 array comparative genomic hybridization (CGH) studies. Our analysis reveals similarity of chromosomal arm-level alterations among developmentally related tumor types as well as a number of co-occurring pairs of arm-level alterations. Recurrent (“pan-lineage”) focal alterations identified across diverse tumor types show an enrichment of known cancer-related genes and genes with relevant functions in cancer-associated phenotypes (e.g., kinase and cell cycle). Tumor type-specific (“lineage-restricted”) alterations and their enriched functional categories were also identified. Furthermore, we developed an algorithm for detecting regions in which the copy number oscillates rapidly between fixed levels, indicative of chromothripsis. We observed these massive genomic rearrangements in 1%–2% of the samples with variable tumor type-specific incidence rates. Taken together, our comprehensive view of copy number alterations provides a framework for understanding the functional significance of various genomic alterations in cancer genomes.

150 citations


Journal ArticleDOI
TL;DR: It is proposed that the relationship between aneuploidy and chromosomal instability can be envisioned as a “vicious cycle,” where aneuPLoidy potentiates chromosomal stability leading to further karyotype diversity in the affected population.
Abstract: Aneuploidy and chromosomal instability frequently co-exist, and aneuploidy is recognized as a direct outcome of chromosomal instability. However, chromosomal instability is widely viewed as a consequence of mutations in genes involved in DNA replication, chromosome segregation, and cell cycle checkpoints. Telomere attrition and presence of extra centrosomes have also been recognized as causative for errors in genomic transmission. Here, we examine recent studies suggesting that aneuploidy itself can be responsible for the procreation of chromosomal instability. Evidence from both yeast and mammalian experimental models suggests that changes in chromosome copy number can cause changes in dosage of the products of many genes located on aneuploid chromosomes. These effects on gene expression can alter the balanced stoichiometry of various protein complexes, causing perturbations of their functions. Therefore, phenotypic consequences of aneuploidy will include chromosomal instability if the balanced stoichiometry of protein machineries responsible for accurate chromosome segregation is affected enough to perturb the function. The degree of chromosomal instability will depend on specific karyotypic changes, which may be due to dosage imbalances of specific genes or lack of scaling between chromosome segregation load and the capacity of the mitotic system. We propose that the relationship between aneuploidy and chromosomal instability can be envisioned as a “vicious cycle,” where aneuploidy potentiates chromosomal instability leading to further karyotype diversity in the affected population.

Journal ArticleDOI
TL;DR: Manipulation of molecular networks controlling centrosome function may soon become a viable target for specific therapeutic intervention in cancer, particularly since normal cells, which lack centrosomes alterations, may be spared the toxicity of such therapies.
Abstract: The unique ability of centrosomes to nucleate and organize microtubules makes them unrivaled conductors of important interphase processes, such as intracellular payload traffic, cell polarity, cell locomotion, and organization of the immunologic synapse. But it is in mitosis that centrosomes loom large, for they orchestrate, with clockmaker’s precision, the assembly and functioning of the mitotic spindle, ensuring the equal partitioning of the replicated genome into daughter cells. Centrosome dysfunction is inextricably linked to aneuploidy and chromosome instability, both hallmarks of cancer cells. Several aspects of centrosome function in normal and cancer cells have been molecularly characterized during the last two decades, greatly enhancing our mechanistic understanding of this tiny organelle. Whether centrosome defects alone can cause cancer, remains unanswered. Until recently, the aggregate of the evidence had suggested that centrosome dysfunction, by deregulating the fidelity of chromosome segregation, promotes and accelerates the characteristic Darwinian evolution of the cancer genome enabled by increased mutational load and/or decreased DNA repair. Very recent experimental work has shown that missegregated chromosomes resulting from centrosome dysfunction may experience extensive DNA damage, suggesting additional dimensions to the role of centrosomes in cancer. Centrosome dysfunction is particularly prevalent in tumors in which the genome has undergone extensive structural rearrangements and chromosome domain reshuffling. Ongoing gene reshuffling reprograms the genome for continuous growth, survival, and evasion of the immune system. Manipulation of molecular networks controlling centrosome function may soon become a viable target for specific therapeutic intervention in cancer, particularly since normal cells, which lack centrosome alterations, may be spared the toxicity of such therapies.

Journal ArticleDOI
TL;DR: How the normal replication timing program, as well as how alterations to this program, can contribute to the evolution of the genomic landscape in normal and cancerous cells are discussed.

Journal ArticleDOI
TL;DR: It was indicated that amplification and fusion of several genes on chromosomes 1 and 8 occur simultaneously but not sequentially through chromothripsis in the development of SCLC, and amplification rather than fusion of genes plays an important role in its development.
Abstract: To obtain a landscape of gross genetic alterations in small cell lung cancer (SCLC), genome-wide copy number analysis and whole-transcriptome sequencing were performed in 58 and 42 SCLCs, respectively. Focal amplification of known oncogene loci, MYCL1 (1p34.2), MYCN (2p24.3), and MYC (8q24.21), was frequently and mutually exclusively detected. MYCL1 and MYC were co-amplified with other regions on either the same or the different chromosome in several cases. In addition, the 9p24.1 region was identified as being amplified in SCLCs without amplification of MYC family oncogenes. Notably, expression of the KIAA1432 gene in this region was significantly higher in KIAA1432 amplified cells than in non-amplified cells, and its mRNA expression showed strong correlations with the copy numbers. Thus, KIAA1432 is a novel gene activated by amplification in SCLCs. By whole-transcriptome sequencing, a total of 60 fusion transcripts, transcribed from 95 different genes, were identified as being expressed in SCLC cells. However, no in-frame fusion transcripts were recurrently detected in ≥2 SCLCs, and genes in the amplified regions, such as PVT1 neighboring MYC and RLF in MYCL1 amplicons, were recurrently fused with genes in the same amplicons or with those in different amplicons on either the same or different chromosome. Thus, it was indicated that amplification and fusion of several genes on chromosomes 1 and 8 occur simultaneously but not sequentially through chromothripsis in the development of SCLC, and amplification rather than fusion of genes plays an important role in its development.

Journal ArticleDOI
TL;DR: This study links focal copy number alterations and chromothripsis with poor outcome in patients with malignant melanomas (P = 0.0002) and provides a genetic approach to predict outcome in malign melanomas.
Abstract: Genetic changes during tumorigenesis are usually acquired sequentially. However, a recent study showed that in 2% to 3% of all cancers a single catastrophic event, termed chromothripsis, can lead to massive genomic rearrangements confined to one or a few chromosomes. To explore whether the degree of genomic instability and chromothripsis influences prognosis in cancer, we retrospectively applied array-comparative genomic hybridization (aCGH) to 20 malignant melanomas that showed, despite comparable conventional clinical and pathologic parameters, a profoundly different clinical course. We compared 10 patients who died of malignant melanoma 3.7 years (median, range 0.9-7.6 years) after diagnosis with 10 patients who survived malignant melanoma and had a median disease-free survival of 14.8 years (range 12.5-16.7 years; P = 0.00001). We observed a striking association between the degree of chromosomal instability, both numerical and structural, and outcome. Malignant melanomas associated with good prognosis showed only few chromosomal imbalances (mean 1.6 alterations per case), predominantly whole chromosome or chromosome arm gains and losses, whereas malignant melanomas with poor prognosis harbored significantly more chromosomal aberrations (13.9 per case; P = 0.008). Array-based CGH showed that these aberrations were mostly focal events, culminating in two cases in a pattern consistent with the phenomenon of chromothripsis, which was confirmed by paired-end sequencing. This is the first description of chromothripsis in primary malignant melanomas. Our study therefore links focal copy number alterations and chromothripsis with poor outcome in patients with malignant melanomas (P = 0.0002) and provides a genetic approach to predict outcome in malignant melanomas.

Journal ArticleDOI
TL;DR: Differences and similarities are described for chromothripsis rearrangements in somatic tissue and the germ line and the cellular origin and molecular mechanisms of chromothRIpsis are discussed.

Journal ArticleDOI
TL;DR: The view that formation of micronuclei rather than chromosome instability alone explains how loss of PPP6C, and more generally mitotic spindle and centrosome defects, can act as drivers for genome instability in melanoma and other cancers is supported.
Abstract: Mutations in the PPP6C catalytic subunit of protein phosphatase 6 (PP6) are drivers for the development of melanoma. Here, we analyse a panel of melanoma-associated mutations in PPP6C and find that these generally compromise assembly of the PP6 holoenzyme and catalytic activity towards a model substrate. Detailed analysis of one mutant, PPP6C-H114Y, in both primary melanoma and engineered cell lines reveals it is destabilized and undergoes increased proteasome-mediated turnover. Global analysis of phosphatase substrates by mass spectrometry identifies the oncogenic kinase Aurora-A as the major PP6 substrate that is dysregulated under these conditions. Accordingly, cells lacking PPP6C or carrying the PPP6C-H114Y allele have elevated Aurora-A kinase activity and display chromosome instability with associated Aurora-A-dependent micronucleation. Chromosomes mis-segregated to these micronuclei are preferentially stained by the DNA damage marker γ-H2AX, suggesting that loss of PPP6C promotes both chromosome instability and DNA damage. These findings support the view that formation of micronuclei rather than chromosome instability alone explains how loss of PPP6C, and more generally mitotic spindle and centrosome defects, can act as drivers for genome instability in melanoma and other cancers.

Journal ArticleDOI
TL;DR: In this review, novel genomic alteration mechanisms, such as chromothripsis and kataegis, and their implications for cancer are discussed, and an integrative network framework is proposed and discussed.

Journal ArticleDOI
TL;DR: It is found that induced dicentric chromosomes are frequently damaged and mis-segregated during mitosis, and that this leads to extensive chromosomal rearrangements including translocations with other chromosomes.
Abstract: Chromosomal rearrangements can radically alter gene products and their function, driving tumor formation or progression. However, the molecular origins and evolution of such rearrangements are varied and poorly understood, with cancer cells often containing multiple, complex rearrangements. One mechanism that can lead to genomic rearrangements is the formation of a “dicentric” chromosome containing two functional centromeres. Indeed, such dicentric chromosomes have been observed in cancer cells. Here, we tested the ability of a single dicentric chromosome to contribute to genomic instability and neoplastic conversion in vertebrate cells. We developed a system to transiently and reversibly induce dicentric chromosome formation on a single chromosome with high temporal control. We find that induced dicentric chromosomes are frequently damaged and mis-segregated during mitosis, and that this leads to extensive chromosomal rearrangements including translocations with other chromosomes. Populations of pre-neoplastic cells in which a single dicentric chromosome is induced acquire extensive genomic instability and display hallmarks of cellular transformation including anchorage-independent growth in soft agar. Our results suggest that a single dicentric chromosome could contribute to tumor initiation.

Journal ArticleDOI
TL;DR: This review dissects the current understanding of prostate cancer 'omics', including the sentinel role of copy number variation, the growing spectrum of oncogenic fusion genes, the potential influence of chromothripsis, and breakthroughs in defining mutation-associated subtypes.
Abstract: Prostate cancer is a leading cause of global cancer-related death but attempts to improve diagnoses and develop novel therapies have been confounded by significant patient heterogeneity. In recent years, the application of next-generation sequencing to hundreds of prostate tumours has defined novel molecular subtypes and characterized extensive genomic aberration underlying disease initiation and progression. It is now clear that the heterogeneity observed in the clinic is underpinned by a molecular landscape rife with complexity, where genomic rearrangements and rare mutations combine to amplify transcriptomic diversity. This review dissects our current understanding of prostate cancer ‘omics', including the sentinel role of copy number variation, the growing spectrum of oncogenic fusion genes, the potential influence of chromothripsis, and breakthroughs in defining mutation-associated subtypes. Increasing evidence suggests that genomic lesions frequently converge on specific cellular functions and signalling pathways, yet recurrent gene aberration appears rare. Therefore, it is critical that we continue to define individual tumour genomes, especially in the context of their expressed transcriptome. Only through improved characterisation of tumour to tumour variability can we advance to an age of precision therapy and personalized oncology.

Journal ArticleDOI
TL;DR: It is postulate that chromosomal instability can explain tumor response to WEE1 monotherapy and may need to be taken into account when determining the most effective strategy for the use of Wee1 inhibitors in cancer therapy.

Journal ArticleDOI
26 Aug 2013-PLOS ONE
TL;DR: It is indicated that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma.
Abstract: Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis.

Journal ArticleDOI
TL;DR: It is shown why the data used to describe massive catastrophic rearrangements are incompatible with a model comprising a single event only and a molecular mechanism in which a combination of known cellular pathways accounts for chromothripsis is proposed.
Abstract: The acquisition of massive but localized chromosome translocations, a phenomenon termed chromothripsis, has received widespread attention since its discovery over a year ago. Until recently, chromothripsis was believed to originate from a single catastrophic event, but the molecular mechanisms leading to this event are yet to be uncovered. Because a thorough interpretation of the data are missing, the phenomenon itself has wrongly acquired the status of a mechanism used to justify many kinds of complex rearrangements. Although the assumption that all translocations in chromothripsis originate from a single event has met with criticism, satisfactory explanations for the intense but localized nature of this phenomenon are still missing. Here, we show why the data used to describe massive catastrophic rearrangements are incompatible with a model comprising a single event only and propose a molecular mechanism in which a combination of known cellular pathways accounts for chromothripsis. Instead of a single traumatic event, the protection of undamaged chromosomes by telomeres can limit repetitive breakage-fusion-bridge events to a single chromosome arm. Ultimately, common properties of chromosomal instability, such as aneuploidy and centromere fission, might establish the complex genetic pattern observed in this genomic state.

Journal ArticleDOI
TL;DR: How NGS-based exome-, whole genome- and methylome-sequencing have extended the understanding of colorectal carcinogenesis is discussed, and the unique genomic features of CRC are introduced, such as the relationship with bacterial pathogens and the massive genomic rearrangements of chromothripsis.
Abstract: Like other solid tumors, colorectal cancer (CRC) is a genomic disorder in which various types of genomic alterations, such as point mutations, genomic rearrangements, gene fusions, or chromosomal copy number alterations, can contribute to the initiation and progression of the disease. The advent of a new DNA sequencing technology known as next-generation sequencing (NGS) has revolutionized the speed and throughput of cataloguing such cancer-related genomic alterations. Now the challenge is how to exploit this advanced technology to better understand the underlying molecular mechanism of colorectal carcinogenesis and to identify clinically relevant genetic biomarkers for diagnosis and personalized therapeutics. In this review, we will introduce NGS-based cancer genomics studies focusing on those of CRC, including a recent large-scale report from the Cancer Genome Atlas. We will mainly discuss how NGS-based exome-, whole genome- and methylome-sequencing have extended our understanding of colorectal carcinogenesis. We will also introduce the unique genomic features of CRC discovered by NGS technologies, such as the relationship with bacterial pathogens and the massive genomic rearrangements of chromothripsis. Finally, we will discuss the necessary steps prior to development of a clinical application of NGS-related findings for the advanced management of patients with CRC.

Journal ArticleDOI
TL;DR: As the ability to sequence the whole human genome rapidly evolves, the diversity of SVs is illuminated, including very complex rearrangements involving multiple DSBs in a process recently designated as “chromothripsis”.
Abstract: It has been known for several decades that genetic variation involving changes to chromosomal structure (i.e., structural variants) can contribute to disease; however this relationship has been brought into acute focus in recent years largely based on innovative new genomics approaches and technology. Structural variants (SVs) arise from improperly repaired DNA double-strand breaks (DSB). DSBs are a frequent occurrence in all cells and two major pathways are involved in their repair: homologous recombination and non-homologous end joining. Errors during these repair mechanisms can result in SVs that involve losses, gains and rearrangements ranging from a few nucleotides to entire chromosomal arms. Factors such as rearrangements, hotspots and induced DSBs are implicated in the formation of SVs. While de novo SVs are often associated with disease, some SVs are conserved within human subpopulations and may have had a meaningful influence on primate evolution. As the ability to sequence the whole human genome rapidly evolves, the diversity of SVs is illuminated, including very complex rearrangements involving multiple DSBs in a process recently designated as "chromothripsis". Elucidating mechanisms involved in the etiology of SVs informs disease pathogenesis as well as the dynamic function associated with the biology and evolution of human genomes.

Journal ArticleDOI
15 Oct 2013-PLOS ONE
TL;DR: It is postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter.
Abstract: Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ∼26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.

Journal ArticleDOI
24 Apr 2013-Leukemia
TL;DR: The authors have identified several errors within their paper that need to be corrected.
Abstract: Sporadic and reversible chromothripsis in chronic lymphocytic leukemia revealed by longitudinal genomic analysis

Journal ArticleDOI
TL;DR: The data indicate that although a marker of genomic instability, chromothripsis might lead to only a limited number of functionally relevant fusion genes.
Abstract: The VCaP cell line is widely used in prostate cancer research as it is a unique model to study castrate resistant disease expressing high levels of the wild type androgen receptor and the TMPRSS2-ERG fusion transcript. Using next generation sequencing, we assembled the structural variations in VCaP genomic DNA and observed a massive number of genomic rearrangements along the q arm of chromosome 5, characteristic of chromothripsis. Chromothripsis is a recently recognized phenomenon characterized by extensive chromosomal shattering in a single catastrophic event, mainly detected in cancer cells. Various structural events identified on chromosome 5q of VCaP resulted in gene fusions. Out of the 18 gene fusion candidates tested, 15 were confirmed on genomic level. In our set of gene fusions, only rarely we observe microhomology flanking the breakpoints. On RNA level, only five transcripts were detected and NDUFAF2-MAST4 was the only resulting in an in-frame fusion transcript. Our data indicate that although a marker of genomic instability, chromothripsis might lead to only a limited number of functionally relevant fusion genes.

Journal ArticleDOI
TL;DR: The term anachromosome is introduced to describe an abnormal chromosome produced by chromothripsis and a possible connection between chromosome pulverization and fragile sites is discussed.

Journal ArticleDOI
24 Jul 2013-PLOS ONE
TL;DR: It is indicated that not only an elevated chromosomal mis-segregation rate, but also a generalised tolerance to novel chromosomal imbalances contribute to the genomic landscape of human tumours.
Abstract: An unbalanced chromosome number (aneuploidy) is present in most malignant tumours and has been attributed to mitotic mis-segregation of chromosomes. However, recent studies have shown a relatively high rate of chromosomal mis-segregation also in non-neoplastic human cells, while the frequency of aneuploid cells remains low throughout life in most normal tissues. This implies that newly formed aneuploid cells are subject to negative selection in healthy tissues and that attenuation of this selection could contribute to aneuploidy in cancer. To test this, we modelled cellular growth as discrete time branching processes, during which chromosome gains and losses were generated and their host cells subjected to selection pressures of various magnitudes. We then assessed experimentally the frequency of chromosomal mis-segregation as well as the prevalence of aneuploid cells in human non-neoplastic cells and in cancer cells. Integrating these data into our models allowed estimation of the fitness reduction resulting from a single chromosome copy number change to an average of ≈30% in normal cells. In comparison, cancer cells showed an average fitness reduction of only 6% (p = 0.0008), indicative of aneuploidy tolerance. Simulations based on the combined presence of chromosomal mis-segregation and aneuploidy tolerance reproduced distributions of chromosome aberrations in >400 cancer cases with higher fidelity than models based on chromosomal mis-segregation alone. Reverse engineering of aneuploid cancer cell development in silico predicted that aneuploidy intolerance is a stronger limiting factor for clonal expansion of aneuploid cells than chromosomal mis-segregation rate. In conclusion, our findings indicate that not only an elevated chromosomal mis-segregation rate, but also a generalised tolerance to novel chromosomal imbalances contribute to the genomic landscape of human tumours.