scispace - formally typeset
Search or ask a question

Showing papers on "Ferromagnetism published in 2017"


Journal ArticleDOI
07 Jun 2017-Nature
TL;DR: Xu et al. as mentioned in this paper used magneto-optical Kerr effect microscopy to show that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation.
Abstract: Magneto-optical Kerr effect microscopy is used to show that monolayer chromium triiodide is an Ising ferromagnet with out-of-plane spin orientation. The question of what happens to the properties of a material when it is thinned down to atomic-scale thickness has for a long time been a largely hypothetical one. In the past decade, new experimental methods have made it possible to isolate and measure a range of two-dimensional structures, enabling many theoretical predictions to be tested. But it has been a particular challenge to observe intrinsic magnetic effects, which could shed light on the longstanding fundamental question of whether intrinsic long-range magnetic order can robustly exist in two dimensions. In this issue of Nature, two groups address this challenge and report ferromagnetism in atomically thin crystals. Xiang Zhang and colleagues measured atomic layers of Cr2Ge2Te6 and observed ferromagnetic ordering with a transition temperature that, unusually, can be controlled using small magnetic fields. Xiaodong Xu and colleagues measured atomic layers of CrI3 and observed ferromagnetic ordering that, remarkably, was suppressed in double layers of CrI3, but restored in triple layers. The two studies demonstrate a platform with which to test fundamental properties of purely two-dimensional magnets. Since the discovery of graphene1, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin–valley coupling2, Ising superconductors3,4,5 that can be tuned into a quantum metal6, possible Mott insulators with tunable charge-density waves7, and topological semimetals with edge transport8,9. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered10,11,12,13,14; such a crystal would be useful in many technologies from sensing to data storage15. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin–Wagner theorem16. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals17,18,19. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect20, whereas in trilayer CrI3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics12, and van der Waals engineering to produce interface phenomena15.

3,802 citations


Journal ArticleDOI
26 Apr 2017
TL;DR: In this paper, the authors reported the experimental discovery of intrinsic ferromagnetism in Cr 2 Ge 2 Te 6 atomic layers by scanning magneto-optic Kerr microscopy.
Abstract: We report the experimental discovery of intrinsic ferromagnetism in Cr 2 Ge 2 Te 6 atomic layers by scanning magneto-optic Kerr microscopy. In this 2D van der Waals ferromagnet, unprecedented control of transition temperature is realized via small magnetic fields.

3,215 citations


Journal ArticleDOI
TL;DR: In this article, the anomalous Nernst effect was observed in chiral antiferromagnet Mn3Sn with a very small magnetization, and the transverse Seebeck coefficient at zero magnetic field reached ∼ 0.35?μV?K−1 at room temperature and ∼0.6?μ V?K −1 at 200?K, which is comparable to the maximum value known for a ferromagnetic metal.
Abstract: The anomalous Nernst effect is usually associated with ferromagnets — enabling a temperature gradient to generate a transverse electric field — but the Berry curvature associated with Weyl points can drive this phenomenon in chiral antiferromagnets. A temperature gradient in a ferromagnetic conductor can generate a transverse voltage drop perpendicular to both the magnetization and heat current. This anomalous Nernst effect has been considered to be proportional to the magnetization1,2,3,4,5,6,7, and thus observed only in ferromagnets. Theoretically, however, the anomalous Nernst effect provides a measure of the Berry curvature at the Fermi energy8,9, and so may be seen in magnets with no net magnetization. Here, we report the observation of a large anomalous Nernst effect in the chiral antiferromagnet Mn3Sn (ref. 10). Despite a very small magnetization ∼0.002?μB per Mn, the transverse Seebeck coefficient at zero magnetic field is ∼0.35?μV?K−1 at room temperature and reaches ∼0.6?μV?K−1 at 200?K, which is comparable to the maximum value known for a ferromagnetic metal. Our first-principles calculations reveal that this arises from a significantly enhanced Berry curvature associated with Weyl points near the Fermi energy11. As this effect is geometrically convenient for thermoelectric power generation—it enables a lateral configuration of modules to cover a heat source6—these observations suggest that a new class of thermoelectric materials could be developed that exploit topological magnets to fabricate efficient, densely integrated thermopiles.

456 citations


Journal ArticleDOI
TL;DR: It is shown that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.
Abstract: The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.

318 citations


Journal ArticleDOI
TL;DR: It is reported that two-coordinate cobalt imido complexes featuring highly covalent Co═N cores exhibit slow relaxation of magnetization under zero direct-current field with a high effective relaxation barrier up to 413 cm-1, a new record for transition metal based SMMs.
Abstract: The pursuit of single-molecule magnets (SMMs) with better performance urges new molecular design that can endow SMMs larger magnetic anisotropy. Here we report that two-coordinate cobalt imido complexes featuring highly covalent Co═N cores exhibit slow relaxation of magnetization under zero direct-current field with a high effective relaxation barrier up to 413 cm-1, a new record for transition metal based SMMs. Two theoretical models were carried out to investigate the anisotropy of these complexes: single-ion model and Co-N coupling model. The former indicates that the pseudo linear ligand field helps to preserve the first-order orbital momentum, while the latter suggests that the strong ferromagnetic interaction between Co and N makes the [CoN]+ fragment a pseudo single paramagnetic ion, and that the excellent performance of these cobalt imido SMMs is attributed to the inherent large magnetic anisotropy of the [CoN]+ core with |MJ = ± 7/2⟩ ground Kramers doublet.

303 citations


Journal ArticleDOI
TL;DR: In this paper, the direction of the electric field generated by the tip of a scanning tunnelling microscope can be exploited to locally and reversibly switch between a ferromagnetic state and a skyrmion.
Abstract: The electric field generated by the tip of a scanning tunnelling microscope can be exploited to locally and reversibly switch between a ferromagnetic state and a skyrmion. Controlling magnetism with electric fields is a key challenge to develop future energy-efficient devices1,2. The present magnetic information technology is mainly based on writing processes requiring either local magnetic fields or spin torques, but it has also been demonstrated that magnetic properties can be altered on the application of electric fields2,3,4,5. This has been ascribed to changes in magnetocrystalline anisotropy caused by spin-dependent screening and modifications of the band structure6,7,8, changes in atom positions5,9,10 or differences in hybridization with an adjacent oxide layer4,11. However, the switching between states related by time reversal, for example magnetization up and down as used in the present technology, is not straightforward because the electric field does not break time-reversal symmetry. Several workarounds have been applied to toggle between bistable magnetic states with electric fields12,13, including changes of material composition as a result of electric fields14. Here we demonstrate that local electric fields can be used to switch reversibly between a magnetic skyrmion15,16 and the ferromagnetic state. These two states are topologically inequivalent, and we find that the direction of the electric field directly determines the final state. This observation establishes the possibility to combine electric-field writing with the recently envisaged skyrmion racetrack-type memories17,18.

294 citations


Journal ArticleDOI
TL;DR: The authors fabricate Fe-doped SnS2 monolayers and show that Fe0.021Sn0.979S2 exhibits ferromagnetic behaviour with perpendicular anisotropy at 2 K, and a Curie temperature of 31’K.
Abstract: Magnetic two-dimensional materials have attracted considerable attention for their significant potential application in spintronics. In this study, we present a high-quality Fe-doped SnS2 monolayer exfoliated using a micromechanical cleavage method. Fe atoms were doped at the Sn atom sites, and the Fe contents are ∼2.1%, 1.5%, and 1.1%. The field-effect transistors based on the Fe0.021Sn0.979S2 monolayer show n-type behavior and exhibit high optoelectronic performance. Magnetic measurements show that pure SnS2 is diamagnetic, whereas Fe0.021Sn0.979S2 exhibits ferromagnetic behavior with a perpendicular anisotropy at 2 K and a Curie temperature of ~31 K. Density functional theory calculations show that long-range ferromagnetic ordering in the Fe-doped SnS2 monolayer is energetically stable, and the estimated Curie temperature agrees well with the results of our experiment. The results suggest that Fe-doped SnS2 has significant potential in future nanoelectronic, magnetic, and optoelectronic applications. 2D materials can be doped with magnetic atoms in order to boost their potential applications in spintronics. Here, the authors fabricate Fe-doped SnS2 monolayers and show that Fe0.021Sn0.979S2 exhibits ferromagnetic behaviour with perpendicular anisotropy at 2 K, and a Curie temperature of 31 K.

285 citations


Journal ArticleDOI
07 Jun 2017-ACS Nano
TL;DR: High magnetic moments, high Curie temperatures, robust ferromagnetism, and intrinsic half-metallic transport behavior of M2NTx nitride MXene structures suggest that they are promising candidates for spintronic applications, which should stimulate interest in their synthesis.
Abstract: Two-dimensional materials with intrinsic and robust ferromagnetism and half-metallicity are of great interest to explore the exciting physics and applications of nanoscale spintronic devices, but no such materials have been experimentally realized In this study, we predict several M2NTx nitride MXene structures that display these characteristics based on a comprehensive study using a crystal field theory model and first-principles simulations We demonstrate intrinsic ferromagnetism in Mn2NTx with different surface terminations (T = O, OH, and F), as well as in Ti2NO2 and Cr2NO2 High magnetic moments (up to 9 μB per unit cell), high Curie temperatures (1877 to 566 K), robust ferromagnetism, and intrinsic half-metallic transport behavior of these MXenes suggest that they are promising candidates for spintronic applications, which should stimulate interest in their synthesis

262 citations


Journal ArticleDOI
21 Jun 2017-ACS Nano
TL;DR: It is shown that MIONs with large sizes (>20 nm) have a specific absorption rate (SAR) significantly higher than that predicted by the widely used linear theory of MFH, which offers important insight into the rationale design of MION-based MFH for therapeutic applications.
Abstract: The ability to generate heat under an alternating magnetic field (AMF) makes magnetic iron oxide nanoparticles (MIONs) an ideal heat source for biomedical applications including cancer thermoablative therapy, tissue preservation, and remote control of cell function. However, there is a lack of quantitative understanding of the mechanisms governing heat generation of MIONs, and the optimal nanoparticle size for magnetic fluid heating (MFH) applications. Here, we show that MIONs with large sizes (>20 nm) have a specific absorption rate (SAR) significantly higher than that predicted by the widely used linear theory of MFH. The heating efficiency of MIONs in both the superparamagnetic and ferromagnetic regimes increased with size, which can be accurately characterized with a modified dynamic hysteresis model. In particular, the 40 nm ferromagnetic nanoparticles have an SAR value approaching the theoretical limit under a clinically relevant AMF. An in vivo study further demonstrated that the 40 nm MIONs could ...

258 citations


Journal ArticleDOI
TL;DR: The formation and resolution of the internal spin structure of room temperature skyrmions without a stabilizing out-of-plane field in thick magnetic multilayers opens up a new set of tools and materials to study the physics and device applications associated with chiral ordering and skyrMions.
Abstract: Neel skyrmions are of high interest due to their potential applications in a variety of spintronic devices, currently accessible in ultrathin heavy metal/ferromagnetic bilayers and multilayers with a strong Dzyaloshinskii–Moriya interaction. Here we report on the direct imaging of chiral spin structures including skyrmions in an exchange-coupled cobalt/palladium multilayer at room temperature with Lorentz transmission electron microscopy, a high-resolution technique previously suggested to exhibit no Neel skyrmion contrast. Phase retrieval methods allow us to map the internal spin structure of the skyrmion core, identifying a 25 nm central region of uniform magnetization followed by a larger region characterized by rotation from in- to out-of-plane. The formation and resolution of the internal spin structure of room temperature skyrmions without a stabilizing out-of-plane field in thick magnetic multilayers opens up a new set of tools and materials to study the physics and device applications associated with chiral ordering and skyrmions. Neel skyrmions are spin textures with a magnetization that rotates from in- to out-of-plane with distance from its centre. Here, the authors show that Lorentz transmission electron microscopy can be used to directly image Neel skyrmions with high resolution in thick exchange-coupled magnetic multilayers.

257 citations


Journal ArticleDOI
TL;DR: It is demonstrated that sub-nanosecond spin-orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation.
Abstract: The deterministic nucleation of single skyrmions at a controlled position along multilayered magnetic racetracks is demonstrated by exploiting spin-orbit torques without the need of in-plane magnetic fields. Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii–Moriya interaction (DMI)1,2,3,4,5,6. The last favours homochiral skyrmions, whose motion is driven by spin–orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin–orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI4,5,6,7,8. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect9. This leads to torques10 that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field11,12,13. Although spin–orbit torques led to domain nucleation in continuous films14 and to stochastic nucleation of skyrmions in magnetic tracks15, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin–orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs16.

Journal ArticleDOI
20 Jul 2017-Nature
TL;DR: This work image the three-dimensional magnetic structure in the vicinity of the Bloch points, which until now has been accessible only through micromagnetic simulations, and identifies two possible magnetization configurations: a circulating magnetization structure and a twisted state that appears to correspond to an ‘anti-Bloch point’.
Abstract: Techniques exist for imaging the magnetization patterns of magnetic thin films and at the surfaces of magnets, but here hard-X-ray tomography is used to image the three-dimensional magnetic structure within a micrometre-sized magnet in the vicinity of Bloch points. Techniques have long existed for imaging the two-dimensional magnetization patterns of thin-film magnets, but the three-dimensional complexities of magnetization structure within the body of a magnet is not so amenable to direct investigation. Claire Donnelly et al. have made substantial progress in lifting this veil by harnessing hard-X-ray tomography to determine the inner magnetic structure of micrometre-sized magnets. The properties of current X-ray sources limit the spatial resolution to about 100 nanometres, but it is anticipated that future instrumental developments could greatly improve on this. In soft ferromagnetic materials, the smoothly varying magnetization leads to the formation of fundamental patterns such as domains, vortices and domain walls1. These have been studied extensively in thin films of thicknesses up to around 200 nanometres, in which the magnetization is accessible with current transmission imaging methods that make use of electrons or soft X-rays. In thicker samples, however, in which the magnetization structure varies throughout the thickness and is intrinsically three dimensional, determining the complex magnetic structure directly still represents a challenge1,3. We have developed hard-X-ray vector nanotomography with which to determine the three-dimensional magnetic configuration at the nanoscale within micrometre-sized samples. We imaged the structure of the magnetization within a soft magnetic pillar of diameter 5 micrometres with a spatial resolution of 100 nanometres and, within the bulk, observed a complex magnetic configuration that consists of vortices and antivortices that form cross-tie walls and vortex walls along intersecting planes. At the intersections of these structures, magnetic singularities—Bloch points—occur. These were predicted more than fifty years ago4 but have so far not been directly observed. Here we image the three-dimensional magnetic structure in the vicinity of the Bloch points, which until now has been accessible only through micromagnetic simulations, and identify two possible magnetization configurations: a circulating magnetization structure5 and a twisted state that appears to correspond to an ‘anti-Bloch point’. Our imaging method enables the nanoscale study of topological magnetic structures6 in systems with sizes of the order of tens of micrometres. Knowledge of internal nanomagnetic textures is critical for understanding macroscopic magnetic properties and for designing bulk magnets for technological applications7.

Journal ArticleDOI
TL;DR: The authors report room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques, and identify a large charge-to-spin conversion efficiency in the thin Bi2Se3 films, where the topological surface states are dominant.
Abstract: Topological insulators with spin-momentum-locked topological surface states are expected to exhibit a giant spin-orbit torque in the topological insulator/ferromagnet systems. To date, the topological insulator spin-orbit torque-driven magnetization switching is solely reported in a Cr-doped topological insulator at 1.9 K. Here we directly show giant spin-orbit torque-driven magnetization switching in a Bi2Se3/NiFe heterostructure at room temperature captured using a magneto-optic Kerr effect microscope. We identify a large charge-to-spin conversion efficiency of ~1–1.75 in the thin Bi2Se3 films, where the topological surface states are dominant. In addition, we find the current density required for the magnetization switching is extremely low, ~6 × 105 A cm–2, which is one to two orders of magnitude smaller than that with heavy metals. Our demonstration of room temperature magnetization switching of a conventional 3d ferromagnet using Bi2Se3 may lead to potential innovations in topological insulator-based spintronic applications.

Journal ArticleDOI
TL;DR: In this paper, the authors explore the layered antiferromagnet CrCl${}_{3}$ and show that ferromagnetic correlations develop before long-range order between the layers is established.
Abstract: Cleavable magnetic materials provide not only a means to study magnetism in the ultimate 2D limit, but also enable increased functionality for van der Waals heterostructures. Here the authors explore the layered antiferromagnet CrCl${}_{3}$. Thermodynamic measurements show ferromagnetic correlations develop before long-range order between the layers is established; van der Waals density functional calculations indicate strong coupling of the magnetism to the crystal lattice, and the authors demonstrate mechanical exfoliation of the bulk crystals into stable monolayer specimens. Together these results show CrCl${}_{3}$ to be a promising compound for studying monolayer magnetism and for integrating magnetism into heterostructures with complementary optoelectronic materials.

Journal ArticleDOI
TL;DR: In this article, a theoretical framework based on cluster multipole (CMP) was introduced to characterize macroscopic magnetization of antiferromagnets and explain the anomalous Hall effect in the AFM states.
Abstract: Here, the authors discover a missing link between antiferromagnetism and the Hall effect by introducing a theoretical framework based on a novel concept, cluster multipole (CMP), to characterize macroscopic magnetization of antiferromagnets. Whereas the anomalous Hall effect (AHE) is usually observed in ferromagnets and explained as an outcome of the macroscopic dipole magnetization, CMP theory reveals that a certain type of antiferromagnetic (AFM) structure induces the AHE despite no net magnetization. The new order parameters enable us to characterize the AHE in the AFM states and explain the AHE in the AFM states of Mn${}_{3}$Ir and Mn${}_{3}Z$ ($Z$ = Sn, Ge), for which the large AHE has recently been studied. Furthermore, the theory can deal with the AHE in antiferromagnets on an equal footing with that in simple ferromagnets. The authors compare the AHE in antiferromagnetic Mn${}_{3}Z$ Mn${}_{3}Z$ and ferromagnetic bcc Fe based on first-principles calculations and find out their similarity with respect to the CMP moments. The theory brings on a significant step forward in our current understanding of anomalous current in condensed matter, and the obtained knowledge could be crucial in the future for the design of antiferromagnetic devices, e.g., with possible spintronics-related applications.

Journal ArticleDOI
14 Sep 2017-Nature
TL;DR: Real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature is demonstrated using a non-invasive, scanning single-spin magnetometer based on a nitrogen–vacancy defect in diamond and how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures is demonstrated.
Abstract: Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

Journal ArticleDOI
TL;DR: In this article, the magnetic properties of 2D metal dihalides are investigated based on first-principles calculations, and it is shown that single-layer dihalide is energetically and dynamically stable and can be exfoliated from their bulk layered forms.
Abstract: Based on first-principles calculations, we investigate a novel class of 2D materials – MX2 metal dihalides (X = Cl, Br, I). Our results show that single-layer dihalides are energetically and dynamically stable and can be potentially exfoliated from their bulk layered forms. We found that 2D FeX2, NiX2, CoCl2 and CoBr2 monolayers are ferromagnetic (FM), while VX2, CrX2, MnX2 and CoI2 are antiferromagnetic (AFM). The magnetic properties of 2D dihalides originate from the competition between AFM direct nearest-neighbor d–d exchange and FM superexchange via halogen p states, which leads to a variety of magnetic states. The thermal dependence of magnetic properties and the Curie temperature of magnetic transition are evaluated using statistical Monte Carlo simulations based on the Ising model with classical Heisenberg Hamiltonian. The magnetic properties of single-layer dihalides can be further tuned by strain and carrier doping. Our study broadens the family of existing 2D materials with promising applications in nanospintronics.

Journal ArticleDOI
TL;DR: This work carried out a full stability analysis of intermetallic Heusler alloys made only of transition metals, and produced two new magnets: Co2MnTi, which displays a remarkably high TC in perfect agreement with the predictions, and Mn2PtPd, which is an antiferromagnet.
Abstract: Magnetic materials underpin modern technologies, ranging from data storage to energy conversion to contactless sensing. However, the development of a new high-performance magnet is a long and often unpredictable process, and only about two dozen magnets are featured in mainstream applications. We describe a systematic pathway to the design of novel magnetic materials, which demonstrates a high throughput and discovery speed. On the basis of an extensive electronic structure library of Heusler alloys containing 236,115 prototypical compounds, we filtered those displaying magnetic order and established whether they can be fabricated at thermodynamic equilibrium. Specifically, we carried out a full stability analysis of intermetallic Heusler alloys made only of transition metals. Among the possible 36,540 prototypes, 248 were thermodynamically stable but only 20 were magnetic. The magnetic ordering temperature, TC, was estimated by a regression calibrated on the experimental TC of about 60 known compounds. As a final validation, we attempted the synthesis of a few of the predicted compounds and produced two new magnets: Co2MnTi, which displays a remarkably high TC in perfect agreement with the predictions, and Mn2PtPd, which is an antiferromagnet. Our work paves the way for large-scale design of novel magnetic materials at potentially high speed.

Journal ArticleDOI
TL;DR: This work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles.
Abstract: How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFe12O19 nanoparticles and Ba0.3In0.3Co4Sb12 matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFe12O19 nanoparticles from ferromagnetism to paramagnetism. BaFe12O19 nanoparticles trap electrons below the Curie temperature (TC) and release the trapped electrons above the TC, playing an ‘electron repository’ role in maintaining high figure of merit ZT. BaFe12O19 nanoparticles produce two types of magnetoelectric effect—electron spiral motion and magnon-drag thermopower—as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles. The ferromagnetic transition in magnetic nanoparticles embedded in magnetic nanocomposite thermoelectric materials is attributed to the trapping and release of electrons, which increases the performance of the thermoelectric materials.

Journal ArticleDOI
TL;DR: In this article, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated based on the high-entropy effect.

Journal ArticleDOI
TL;DR: 2D Fe2Si nanosheet, one counterpart of Hapkeite mineral discovered in meteorite with novel magnetism is proposed on the basis of first-principles calculations and has a high thermodynamic stability and its 2D lattice can be retained at the temperature up to 1200 K.
Abstract: Searching experimental feasible two-dimensional (2D) ferromagnetic crystals with large spin-polarization ratio, high Curie temperature and large magnetic anisotropic energy is one key to develop next-generation spintronic nanodevices. Here, 2D Fe2Si nanosheet, one counterpart of Hapkeite mineral discovered in meteorite with novel magnetism is proposed on the basis of first-principles calculations. The 2D Fe2Si crystal has a slightly buckled triangular lattice with planar hexacoordinated Si and Fe atoms. The spin-polarized calculations with hybrid HSE06 function method indicate that 2D Fe2Si is a ferromagnetic half metal at its ground state with 100% spin-polarization ratio at Fermi energy level. The phonon spectrum calculation and ab initio molecular dynamic simulation shows that 2D Fe2Si crystal has a high thermodynamic stability and its 2D lattice can be retained at the temperature up to 1200 K. Monte Carlo simulations based on the Ising model predict a Curie temperature over 780 K in 2D Fe2Si crystal, ...

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate drastically enhanced Tc by exchange coupling TIs to Tm3Fe5O12, a high-Tc magnetic insulator with perpendicular magnetic anisotropy.
Abstract: The quantum anomalous Hall effect (QAHE) that emerges under broken time-reversal symmetry in topological insulators (TIs) exhibits many fascinating physical properties for potential applications in nanoelectronics and spintronics. However, in transition metal-doped TIs, the only experimentally demonstrated QAHE system to date, the QAHE is lost at practically relevant temperatures. This constraint is imposed by the relatively low Curie temperature (Tc) and inherent spin disorder associated with the random magnetic dopants. We demonstrate drastically enhanced Tc by exchange coupling TIs to Tm3Fe5O12, a high-Tc magnetic insulator with perpendicular magnetic anisotropy. Signatures showing that the TI surface states acquire robust ferromagnetism are revealed by distinct squared anomalous Hall hysteresis loops at 400 K. Point-contact Andreev reflection spectroscopy confirms that the TI surface is spin-polarized. The greatly enhanced Tc, absence of spin disorder, and perpendicular anisotropy are all essential to the occurrence of the QAHE at high temperatures.

Journal ArticleDOI
TL;DR: In this article, a tricolor topological insulator (TI) was designed to realize the TME effect as an axion insulator and the resistance reached as high as 109 ohms, leading to a gigantic magnetoresistance ratio exceeding 10,000,000% upon the transition from the QAH state.
Abstract: Exploration of novel electromagnetic phenomena is a subject of great interest in topological quantum materials. One of the unprecedented effects to be experimentally verified is the topological magnetoelectric (TME) effect originating from an unusual coupling of electric and magnetic fields in materials. A magnetic heterostructure of topological insulator (TI) hosts such exotic magnetoelectric coupling and can be expected to realize the TME effect as an axion insulator. We designed a magnetic TI with a tricolor structure where a nonmagnetic layer of (Bi, Sb)2Te3 is sandwiched by a soft ferromagnetic Cr-doped (Bi, Sb)2Te3 and a hard ferromagnetic V-doped (Bi, Sb)2Te3. Accompanied by the quantum anomalous Hall (QAH) effect, we observe zero Hall conductivity plateaus, which are a hallmark of the axion insulator state, in a wide range of magnetic fields between the coercive fields of Cr- and V-doped layers. The resistance of the axion insulator state reaches as high as 109 ohms, leading to a gigantic magnetoresistance ratio exceeding 10,000,000% upon the transition from the QAH state. The tricolor structure of the TI may not only be an ideal arena for the topologically distinct phenomena but can also provide magnetoresistive applications for advancing dissipation-less topological electronics.

Journal ArticleDOI
TL;DR: The effect of Zn-doping in CoFe2O4 nanoparticles (NPs) through chemical co-precipitation route was investigated in term of structural, optical, and magnetic properties; the magnetic properties are remarkably influenced with Zn doping.
Abstract: The effect of Zn-doping in CoFe2O4 nanoparticles (NPs) through chemical co-precipitation route was investigated in term of structural, optical, and magnetic properties. Both XRD and FTIR analyses confirm the formation of cubic spinel phase, where the crystallite size changes with Zn content from 46 to 77 nm. The Scherrer method, Williamson-Hall (W-H) analysis, and size-strain plot method (SSPM) were used to study of crystallite sizes. The TEM results were in good agreement with the results of the SSP method. SEM observations reveal agglomeration of fine spherical-like particles. The optical band gap energy determined from diffuse reflectance spectroscopy (DRS) varies increases from 1.17 to 1.3 eV. Magnetization field loops reveal a ferromagnetic behavior with lower hysteresis loop for higher Zn content. The magnetic properties are remarkably influenced with Zn doping; saturation magnetization (Ms) increases then decreases while both coercivity (HC) and remanent magnetization (Mr) decrease continuously, which was associated with preferential site occupancy and the change in particle size.

Journal ArticleDOI
TL;DR: In this paper, spin Hall magnetoresistance (SMR) measurements of Pt Hall bars on antiferromagnetic NiO(111) single crystals are reported. But the authors do not consider the effect of magnetic moments alignment and the external magnetic field direction.
Abstract: We report on spin Hall magnetoresistance (SMR) measurements of Pt Hall bars on antiferromagnetic NiO(111) single crystals. An SMR with a sign opposite to conventional SMR is observed over a wide range of temperatures as well as magnetic fields stronger than 0.25 T. The negative sign of the SMR can be explained by the alignment of magnetic moments being almost perpendicular to the external magnetic field within the easy plane (111) of the antiferromagnet. This correlation of magnetic moment alignment and the external magnetic field direction is realized just by the easy-plane nature of the material without the need of any exchange coupling to an additional ferromagnet. The SMR signal strength decreases with increasing temperature, primarily due to the decrease in Neel order by including fluctuations. An increasing magnetic field increases the SMR signal strength as there are fewer domains, and the magnetic moments are more strongly manipulated at high magnetic fields. The SMR is saturated at an applied magnetic field of 6 T, resulting in a spin-mixing conductance of similar to 10(18) Omega(-1) m(-2), which is comparable to that of Pt on insulating ferrimagnets such as yttrium iron garnet. An argon plasma treatment doubles the spin-mixing conductance. Published by AIP Publishing.

Journal ArticleDOI
TL;DR: Two-dimensional materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified and theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal are presented.
Abstract: Two-dimensional (2D) materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified. Here we present theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless of the surface terminations (T = O, OH, and F), as well as in Hf2MnC2O2 and Hf2VC2O2 monolayers. The high magnetic moments (3–4 μB/unit cell) and high Curie temperatures (495–1133 K) of these MXenes are superior to those of existing 2D ferromagnetic materials. Furthermore, semimetal-to-semiconductor and ferromagnetic-to-antiferromagnetic phase transitions are predicted to occur in these materials in the presence of small or moderate tensile in-plane strains (0–3%), which can be externally applied mechanically or inte...

Journal ArticleDOI
TL;DR: It is demonstrated that the Rashba-split 2DEG at the complex oxide interface can be used for efficient charge-and-spin conversion at room temperature for the generation and detection of spin current.
Abstract: The Rashba physics has been intensively studied in the field of spin orbitronics for the purpose of searching novel physical properties and the ferromagnetic (FM) magnetization switching for technological applications. We report our observation of the inverse Edelstein effect up to room temperature in the Rashba-split two-dimensional electron gas (2DEG) between two insulating oxides, SrTiO3 and LaAlO3, with the LaAlO3 layer thickness from 3 to 40 unit cells (UC). We further demonstrate that the spin voltage could be markedly manipulated by electric field effect for the 2DEG between SrTiO3 and 3-UC LaAlO3. These results demonstrate that the Rashba-split 2DEG at the complex oxide interface can be used for efficient charge-and-spin conversion at room temperature for the generation and detection of spin current.

Journal ArticleDOI
TL;DR: This spontaneously formed self-assembled heterostructure with a massive Dirac spectrum, characterized by a nontrivial Chern number C = -1, has a potential to realize the QAHE at significantly higher temperatures than reported up to now and can serve as a platform for developing future "topotronics" devices.
Abstract: Inducing magnetism into topological insulators is intriguing for utilizing exotic phenomena such as the quantum anomalous Hall effect (QAHE) for technological applications. While most studies have focused on doping magnetic impurities to open a gap at the surface-state Dirac point, many undesirable effects have been reported to appear in some cases that makes it difficult to determine whether the gap opening is due to the time-reversal symmetry breaking or not. Furthermore, the realization of the QAHE has been limited to low temperatures. Here we have succeeded in generating a massive Dirac cone in a MnBi2Se4/Bi2Se3 heterostructure, which was fabricated by self-assembling a MnBi2Se4 layer on top of the Bi2Se3 surface as a result of the codeposition of Mn and Se. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the fabricated MnBi2Se4/Bi2Se3 heterostructure shows ferromagnetism up to room temperature and a clear Dirac cone gap opening of ∼100 meV without any othe...

Journal ArticleDOI
TL;DR: This work demonstrates magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules, and presents a simple low-power magnetization mechanism when operating at ambient conditions.
Abstract: Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices’ structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. Spin manipulation in memory devices typically requires large electrical currents, limiting performance. Here the authors demonstrate magnetization switching in ferromagnetic films by depositing chiral molecules, making use of a proximity effect without needing magnetic or electric fields.

Journal ArticleDOI
14 Sep 2017
TL;DR: In this paper, the authors reported the wafer-scale growth of 2D ferromagnetic thin films of Fe3GeTe2 via molecular beam epitaxy, and their exotic magnetic properties can be manipulated via the Fe composition and the interface coupling with antiferromagnetic MnTe.
Abstract: Recently, layered two-dimensional ferromagnetic materials (2D FMs) have attracted a great deal of interest for developing low-dimensional magnetic and spintronic devices. Mechanically exfoliated 2D FMs were discovered to possess ferromagnetism down to monolayer. It is therefore of great importance to investigate the distinct magnetic properties at low dimensionality. Here, we report the wafer-scale growth of 2D ferromagnetic thin films of Fe3GeTe2 via molecular beam epitaxy, and their exotic magnetic properties can be manipulated via the Fe composition and the interface coupling with antiferromagnetic MnTe. A 2D layer-by-layer growth mode has been achieved by in situ reflection high-energy electron diffraction oscillations, yielding a well-defined interlayer distance of 0.82 nm along {002} surface. The magnetic easy axis is oriented along c-axis with a Curie temperature of 216.4 K. Remarkably, the Curie temperature can be enhanced when raising the Fe composition. Upon coupling with MnTe, the coercive field dramatically increases 50% from 0.65 to 0.94 Tesla. The large-scale layer-by-layer growth and controllable magnetic properties make Fe3GeTe2 a promising candidate for spintronic applications. It also opens up unprecedented opportunities to explore rich physics when coupled with other 2D superconductors and topological matters. Molecular beam epitaxy enables wafer-scale growth of Fe3GeTe2, an atomically thin ferromagnetic compound. A team led by Faxian Xiu at Fudan University demonstrated layer-by-layer growth of large-area, 8 nm-thick films of Fe3GeTe2 on sapphire and GaAs substrates in a high-vacuum molecular beam epitaxy system. The measured Curie temperature of 216.4 K was found to vary systematically with the Fe composition, indicating that Fe doping is a viable route to achieving tailored ferromagnetic ternary compounds with tunable Curie temperature. Furthermore, upon coupling Fe3GeTe2 with antiferromagnetic MnTe, the magnetic properties of the former could be enhanced owing to the exchange interaction from the ferromagnetic/antiferromagnetic superlattice interface. As a result, the coercive field increased by 50% with respect to bare Fe3GeTe2. These results highlight that Fe3GeTe2 and its heterostructures are promising candidates for spintronic devices.