scispace - formally typeset
Search or ask a question

Showing papers on "Kinome published in 2012"


Journal ArticleDOI
13 Apr 2012-Cell
TL;DR: The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective, allowing rational design of combination therapies for cancer.

677 citations


Journal ArticleDOI
05 Jul 2012-Oncogene
TL;DR: The findings support the importance of the glycolytic pathway in the maintenance of malignant glioma cells and brain CSCs and imply tumor metabolism as a promising therapeutic target in glioblastoma.
Abstract: The concept of cancer stem-like cells (CSCs) has gained considerable attention in various solid tumors including glioblastoma, the most common primary brain tumor. This sub-population of tumor cells has been intensively investigated and their role in therapy resistance as well as tumor recurrence has been demonstrated. In that respect, development of therapeutic strategies that target CSCs (and possibly also the tumor bulk) appears a promising approach in patients suffering from primary brain tumors. In the present study, we utilized RNA interference (RNAi) to screen the complete human kinome and phosphatome (682 and 180 targets, respectively) in order to identify genes and pathways relevant for the survival of brain CSCs and thereby potential therapeutical targets for glioblastoma. We report of 46 putative candidates including known survival-related kinases and phosphatases. Interestingly, a number of genes identified are involved in metabolism, especially glycolysis, such as PDK1 and PKM2 and, most prominently PFKFB4. In vitro studies confirmed an essential role of PFKFB4 in the maintenance of brain CSCs. Furthermore, high PFKFB4 expression was associated with shorter survival of primary glioblastoma patients. Our findings support the importance of the glycolytic pathway in the maintenance of malignant glioma cells and brain CSCs and imply tumor metabolism as a promising therapeutic target in glioblastoma.

132 citations


Journal ArticleDOI
TL;DR: The results demonstrated that, with the exception of PP242, available ATP-competitive compounds are highly selective mTOR inhibitors when applied to cells at concentrations below 1 μm and that the compounds may represent a starting point for medicinal chemistry efforts aimed at developing inhibitors of other PI3K kinase-related kinases.

102 citations


Journal ArticleDOI
TL;DR: Analysis in mouse and zebrafish embryo development confirms that Lats2 acts as a positive modulator of Snail1 protein level and potentiates its in vivo EMT activity.
Abstract: Snail1 is a central regulator of epithelial cell adhesion and movement in epithelial-to-mesenchymal transitions (EMTs) during embryo development; a process reactivated during cancer metastasis. While induction of Snail1 transcription precedes EMT induction, post-translational regulation of Snail1 is also critical for determining Snail1's protein level, subcellular localization, and capacity to induce EMT. To identify novel post-translational regulators of Snail1, we developed a live cell, bioluminescence-based screen. From a human kinome RNAi screen, we have identified Lats2 kinase as a novel regulator of Snail1 protein level, subcellular localization, and thus, activity. We show that Lats2 interacts with Snail1 and directly phosphorylates Snail1 at residue T203. This occurs in the nucleus and serves to retain Snail1 in the nucleus thereby enhancing its stability. Lats2 was found to positively influence cellular EMT and tumour cell invasion, in a Snail1-dependent manner. Indeed during TGFβ-induced EMT Lats2 is activated and Snail1 phosphorylated at T203. Analysis in mouse and zebrafish embryo development confirms that Lats2 acts as a positive modulator of Snail1 protein level and potentiates its in vivo EMT activity.

100 citations


Journal ArticleDOI
TL;DR: A number of Plasmodium kinases have recently been shown by reverse genetics to be essential for various parts of the complex parasitic life cycle, and are thus genetically validated as potential targets and pointed to as a rich source of potential new targets.
Abstract: There is an urgent need for the development of new antimalarial drugs with novel modes of actions. The malarial parasite, Plasmodium falciparum, has a relatively small kinome of <100 kinases, with many members exhibiting a high degree of structural divergence from their host counterparts. A number of Plasmodium kinases have recently been shown by reverse genetics to be essential for various parts of the complex parasitic life cycle, and are thus genetically validated as potential targets. Implementation of mass spectrometry-based phosphoproteomics approaches has informed on key phospho-signalling pathways in the parasite. In addition, global phenotypic screens have revealed a large number of putative protein kinase inhibitors with antimalarial potency. Taken together, these investigations point to the Plasmodium kinome as a rich source of potential new targets. In this review, we highlight recent progress made towards this goal.

90 citations


Journal ArticleDOI
TL;DR: The MET signaling pathway and biology in lung cancer and the recent clinical development and advances of MET/HGF targeting agents are reviewed with emphasis on discussion of issues and strategies needed to optimize the personalized therapy and further clinical development.

86 citations


Journal ArticleDOI
TL;DR: Reverse genetics in the rodent malaria model demonstrates a stage-specific essentiality of the unique PPKL enzyme, which modulates parasite differentiation, motility and transmission.
Abstract: Protein phosphorylation and dephosphorylation (catalysed by kinases and phosphatases, respectively) are post-translational modifications that play key roles in many eukaryotic signalling pathways, and are often deregulated in a number of pathological conditions in humans. In the malaria parasite Plasmodium, functional insights into its kinome have only recently been achieved, with over half being essential for blood stage development and another 14 kinases being essential for sexual development and mosquito transmission. However, functions for any of the plasmodial protein phosphatases are unknown. Here, we use reverse genetics in the rodent malaria model, Plasmodium berghei, to examine the role of a unique protein phosphatase containing kelch-like domains (termed PPKL) from a family related to Arabidopsis BSU1. Phylogenetic analysis confirmed that the family of BSU1-like proteins including PPKL is encoded in the genomes of land plants, green algae and alveolates, but not in other eukaryotic lineages. Furthermore, PPKL was observed in a distinct family, separate to the most closely-related phosphatase family, PP1. In our genetic approach, C-terminal GFP fusion with PPKL showed an active protein phosphatase preferentially expressed in female gametocytes and ookinetes. Deletion of the endogenous ppkl gene caused abnormal ookinete development and differentiation, and dissociated apical microtubules from the inner-membrane complex, generating an immotile phenotype and failure to invade the mosquito mid-gut epithelium. These observations were substantiated by changes in localisation of cytoskeletal tubulin and actin, and the micronemal protein CTRP in the knockout mutant as assessed by indirect immunofluorescence. Finally, increased mRNA expression of dozi, a RNA helicase vital to zygote development was observed in ppkl− mutants, with global phosphorylation studies of ookinete differentiation from 1.5–24 h post-fertilisation indicating major changes in the first hours of zygote development. Our work demonstrates a stage-specific essentiality of the unique PPKL enzyme, which modulates parasite differentiation, motility and transmission.

82 citations


Journal ArticleDOI
TL;DR: It is proposed that HCMV requires AMPK or related activity for viral replication and reprogramming of cellular metabolism, and a comprehensive RNAi screen predicts that 106 cellular kinases influence growth of the virus.
Abstract: Human cytomegalovirus (HCMV) modulates numerous cellular signaling pathways. Alterations in signaling are evident from the broad changes in cellular phosphorylation that occur during HCMV infection and from the altered activity of multiple kinases. Here we report a comprehensive RNAi screen, which predicts that 106 cellular kinases influence growth of the virus, most of which were not previously linked to HCMV replication. Multiple elements of the AMP-activated protein kinase (AMPK) pathway scored in the screen. As a regulator of carbon and nucleotide metabolism, AMPK is poised to activate many of the metabolic pathways induced by HCMV infection. An AMPK inhibitor, compound C, blocked a substantial portion of HCMV-induced metabolic changes, inhibited the accumulation of all HCMV proteins tested, and markedly reduced the production of infectious progeny. We propose that HCMV requires AMPK or related activity for viral replication and reprogramming of cellular metabolism.

81 citations


Journal ArticleDOI
22 Mar 2012-Blood
TL;DR: Data from this first siRNA-kinome sensitizer screen suggests that inhibiting WEE1 in combination with Ara-C is a rational combination for the treatment of myeloid and lymphoid leukemias.

80 citations


Journal ArticleDOI
TL;DR: This tutorial review briefly summarizes the different fluorescent continuous peptide-based strategies that are being commonly employed to sense protein phosphorylation, introduces a few novel and attractive emerging assays, and discusses their advantages and limitations, and highlights possible future directions.
Abstract: Protein phosphorylation is the most frequent post-translational modification used to regulate protein activity. Protein kinases, the enzymes that catalyze the phosphoryl transfer, are implicated in practically every aspect of normal as well as abnormal cell functions. Consequently, sensitive, selective, high-throughput and widely applicable methods for monitoring protein kinase activity will provide valuable tools to screen inhibitor candidates for therapeutics and chemical biology, and to unravel the diverse signaling cascades in which these enzymes are pivotal. Peptide-based chemosensors that rely on fluorescence changes upon phosphorylation are highly desirable, because these systems allow a continuous readout offering an excellent spatial and temporal resolution to observe in real time the kinase activity. This tutorial review briefly summarizes the different fluorescent continuous peptide-based strategies that are being commonly employed to sense protein phosphorylation, introduces a few novel and attractive emerging assays, discusses their advantages and limitations, and highlights possible future directions.

80 citations


Journal ArticleDOI
TL;DR: This study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks.
Abstract: A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks.

Journal ArticleDOI
TL;DR: It was shown that unusual protein kinases with differing ATP-binding sites or catalytic centres seem to occur frequently within the chloroplast kinome, thus making their identification by mass spectrometry-based approaches even more difficult due to a different annotation.
Abstract: In addition to redox regulation, protein phosphorylation has gained increasing importance as a regulatory principle in chloroplasts in recent years. However, only very few chloroplast-localized protein kinases have been identified to date. Protein phosphorylation regulates important chloroplast processes such as photosynthesis or transcription. In order to better understand chloroplast function, it is therefore crucial to obtain a complete picture of the chloroplast kinome, which is currently constrained by two effects: first, recent observations showed that the bioinformatics-based prediction of chloroplast-localized protein kinases from available sequence data is strongly biased; and, secondly, protein kinases are of very low abundance, which makes their identification by proteomics approaches extremely difficult. Therefore, the aim of this study was to obtain a complete list of chloroplast-localized protein kinases from different species. Evaluation of protein kinases which were either highly predicted to be chloroplast localized or have been identified in different chloroplast proteomic studies resulted in the confirmation of only three new kinases. Considering also all reports of experimentally verified chloroplast protein kinases to date, compelling evidence was found for a total set of 15 chloroplast-localized protein kinases in different species. This is in contrast to a much higher number that would be expected based on targeting prediction or on the general abundance of protein kinases in relation to the entire proteome. Moreover, it is shown that unusual protein kinases with differing ATP-binding sites or catalytic centres seem to occur frequently within the chloroplast kinome, thus making their identification by mass spectrometry-based approaches even more difficult due to a different annotation.

Journal ArticleDOI
TL;DR: Genomic, biochemical, genetic and evolutionary information is integrated to provide an integrated and up-to-date analysis of twelve apicomplexan kinomes.

Journal ArticleDOI
TL;DR: Here, essential aspects of all three malaria-related communications are merged, and an integrated discussion of the specific features of the parasite's kinome and phosphoproteome are proposed.
Abstract: Malaria parasites belong to an ancient lineage that diverged very early from the main branch of eukaryotes. The approximately 90-member plasmodial kinome includes a majority of eukaryotic protein kinases that clearly cluster within the AGC, CMGC, TKL, CaMK and CK1 groups found in yeast, plants and mammals, testifying to the ancient ancestry of these families. However, several hundred millions years of independent evolution, and the specific pressures brought about by first a photosynthetic and then a parasitic lifestyle, led to the emergence of unique features in the plasmodial kinome. These include taxon-restricted kinase families, and unique peculiarities of individual enzymes even when they have homologues in other eukaryotes. Here, we merge essential aspects of all three malaria-related communications that were presented at the Evolution of Protein Phosphorylation meeting, and propose an integrated discussion of the specific features of the parasite's kinome and phosphoproteome.

Journal ArticleDOI
TL;DR: This work has identified RIP1-dependent and -independent non-canonical TRAIL kinase cascades in which Src and AKT are instrumental and could be exploited as co-targets in TRAIL therapy for NSCLC.
Abstract: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) triggers apoptosis selectively in tumor cells through interaction with TRAIL-R1/DR4 or TRAIL-R2/DR5 and this process is considered a promising avenue for cancer treatment. TRAIL resistance, however, is frequently encountered and hampers anti-cancer activity. Here we show that whereas H460 non-small cell lung cancer (NSCLC) cells display canonical TRAIL-dependent apoptosis, A549 and SW1573 NSCLC cells are TRAIL resistant and display pro-tumorigenic activity, in particular invasion, following TRAIL treatment. We exploit this situation to contrast TRAIL effects on the kinome of apoptosis-sensitive cells to that of NSCLC cells in which non-canonical effects predominate, employing peptide arrays displaying 1024 different kinase pseudosubstrates more or less comprehensively covering the human kinome. We observed that failure of a therapeutic response to TRAIL coincides with the activation of a non-canonical TRAIL-induced signaling pathway involving, amongst others, Src, STAT3, FAK, ERK and Akt. The use of selective TRAIL variants against TRAIL-R1 or TRAIL-R2 subsequently showed that this non-canonical migration and invasion is mediated through TRAIL-R2. Short-hairpin-mediated silencing of RIP1 kinase prevented TRAIL-induced Src and STAT3 phosphorylation and reduced TRAIL-induced migration and invasion of A549 cells. Inhibition of Src or STAT3 by shRNA or chemical inhibitors including dasatinib and 5,15-diphenylporphyrin blocked TRAIL-induced invasion. FAK, AKT and ERK were activated in a RIP1-independent way and inhibition of AKT sensitized A549 cells to TRAIL-induced apoptosis. We thus identified RIP1-dependent and -independent non-canonical TRAIL kinase cascades in which Src and AKT are instrumental and could be exploited as co-targets in TRAIL therapy for NSCLC.

Journal ArticleDOI
TL;DR: A kinase-focused chemoproteomics strategy is employed that enables the simultaneous profiling of kinase inhibitor potencies against more than 50 endogenously expressed T. brucei kinases in parasite cell extracts and shows the potential for the development of species-specific inhibitors.
Abstract: The protozoan parasite Trypanosoma brucei is the causative agent of African sleeping sickness, and there is an urgent unmet need for improved treatments. Parasite protein kinases are attractive drug targets, provided that the host and parasite kinomes are sufficiently divergent to allow specific inhibition to be achieved. Current drug discovery efforts are hampered by the fact that comprehensive assay panels for parasite targets have not yet been developed. Here, we employ a kinase-focused chemoproteomics strategy that enables the simultaneous profiling of kinase inhibitor potencies against more than 50 endogenously expressed T. brucei kinases in parasite cell extracts. The data reveal that T. brucei kinases are sensitive to typical kinase inhibitors with nanomolar potency and demonstrate the potential for the development of species-specific inhibitors.

Journal ArticleDOI
TL;DR: A new method of analysis of kinome data takes account of the differences between peptide arrays and DNA microarrays and found that this approach identified more of the peptides involved in the pathways than did the other compared methods and that it did so at a much higher degree of statistical confidence.
Abstract: The central roles of kinases in cellular processes and diseases make them highly attractive as indicators of biological responses and as therapeutic targets. Peptide arrays are emerging as an important means of characterizing kinome activity. Currently, the computational tools used to perform high-throughput kinome analyses are not specifically tailored to the nature of the data, which hinders extraction of biological information and overall progress in the field. We have developed a method for kinome analysis, which is implemented as a software pipeline in the R environment. Components and parameters were chosen to address the technical and biological characteristics of kinome microarrays. We performed comparative analysis of kinome data sets that corresponded to stimulation of immune cells with ligands of well-defined signaling pathways: bovine monocytes treated with interferon-γ (IFN-γ), CpG-containing nucleotides, or lipopolysaccharide (LPS). The data sets for each of the treatments were analyzed with our methodology as well as with three other commonly used approaches. The methods were evaluated on the basis of statistical confidence of calculated values with respect to technical and biological variability, and the statistical confidence (P values) by which the known signaling pathways could be independently identified by the pathway analysis of InnateDB (a Web-based resource for innate immunity interactions and pathways). By considering the particular attributes of kinome data, we found that our approach identified more of the peptides involved in the pathways than did the other compared methods and that it did so at a much higher degree of statistical confidence.

Journal ArticleDOI
16 Feb 2012-PLOS ONE
TL;DR: It is argued that despite the lack of conservation of the “classic” catalytic aspartate residue of the archetypical His-Arg-Asp motif, SELO kinases might have retained catalytic phosphotransferase activity, albeit with an atypical active site.
Abstract: Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised. Here, the structural and functional prediction for the uncharacterised selenoprotein O (SELO) is presented. Using bioinformatics tools, we predict that SELO protein adopts a three-dimensional fold similar to protein kinases. Furthermore, we argue that despite the lack of conservation of the “classic” catalytic aspartate residue of the archetypical His-Arg-Asp motif, SELO kinases might have retained catalytic phosphotransferase activity, albeit with an atypical active site. Lastly, the role of the selenocysteine residue is considered and the possibility of an oxidoreductase-regulated kinase function for SELO is discussed. The novel kinase prediction is discussed in the context of functional data on SELO orthologues in model organisms, FMP40 a.k.a.YPL222W (yeast), and ydiU (bacteria). Expression data from bacteria and yeast suggest a role in oxidative stress response. Analysis of genomic neighbourhoods of SELO homologues in the three domains of life points toward a role in regulation of ABC transport, in oxidative stress response, or in basic metabolism regulation. Among bacteria possessing SELO homologues, there is a significant over-representation of aquatic organisms, also of aerobic ones. The selenocysteine residue in SELO proteins occurs only in few members of this protein family, including proteins from Metazoa, and few small eukaryotes (Ostreococcus, stramenopiles). It is also demonstrated that enterobacterial mchC proteins involved in maturation of bactericidal antibiotics, microcins, form a distant subfamily of the SELO proteins. The new protein structural domain, with a putative kinase function assigned, expands the known kinome and deserves experimental determination of its biological role within the cell-signaling network.

Journal ArticleDOI
Ariamala Gopalsamy1, Eric M. Bennett1, Mengxiao Shi1, Wei-Guo Zhang1, Joel Bard1, Ker Yu1 
TL;DR: In this article, a pan-kinase scaffold was optimized to improve its biochemical profile and overall kinome selectivity, including mTOR and CDK, to generate the first reported selective hSMG-1 tool compound.

Journal ArticleDOI
TL;DR: This work quantitatively profiled the effects of Hsp90 inhibition by geldanamycin on the kinome of one primary and three tumour cell lines by affinity proteomics based on immobilized broad spectrum kinase inhibitors ("kinobeads").
Abstract: Background: The heat shock protein 90 (Hsp90) is required for the stability of many signalling kinases. As a target for cancer therapy it allows the simultaneous inhibition of several signalling pathways. However, its inhibition in healthy cells could also lead to severe side effects. This is the first comprehensive analysis of the response to Hsp90 inhibition at the kinome level. Methods: We quantitatively profiled the effects of Hsp90 inhibition by geldanamycin on the kinome of one primary (Hs68) and three tumour cell lines (SW480, U2OS, A549) by affinity proteomics based on immobilized broad spectrum kinase inhibitors ("kinobeads”). To identify affected pathways we used the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway classification. We combined Hsp90 and proteasome inhibition to identify Hsp90 substrates in Hs68 and SW480 cells. The mutational status of kinases from the used cell lines was determined using next-generation sequencing. A mutation of Hsp90 candidate client RIPK2 was mapped onto its structure. Results: We measured relative abundances of > 140 protein kinases from the four cell lines in response to geldanamycin treatment and identified many new potential Hsp90 substrates. These kinases represent diverse families and cellular functions, with a strong representation of pathways involved in tumour progression like the BMP, MAPK and TGF-beta signalling cascades. Co-treatment with the proteasome inhibitor MG132 enabled us to classify 64 kinases as true Hsp90 clients. Finally, mutations in 7 kinases correlate with an altered response to Hsp90 inhibition. Structural modelling of the candidate client RIPK2 suggests an impact of the mutation on a proposed Hsp90 binding domain.

Journal ArticleDOI
TL;DR: Progress on selected protein kinases is described and an understanding of the phosphor-regulatory pathways will not only validate protein kinase targets, but also will identify novel chemotypes to thwart malaria drug resistance.
Abstract: Millions of deaths each year are attributed to malaria worldwide. Transmitted through the bite of an Anopheles mosquito, infection and subsequent death from the Plasmodium species, most notably P. falciparum, can readily spread through a susceptible population. A malaria vaccine does not exist and resistance to virtually every antimalarial drug predicts that mortality and morbidity associated with this disease will increase. With only a few antimalarial drugs currently in the pipeline, new therapeutic options and novel chemotypes are desperately needed. Hit-to-Lead diversity may successfully provide novel inhibitory scaffolds when essential enzymes are targeted, for example, the plasmodial protein kinases. Throughout the entire life cycle of the malaria parasite, protein kinases are essential for growth and development. Ongoing efforts continue to characterize these kinases, while simultaneously pursuing them as antimalarial drug targets. A collection of structural data, inhibitory profiles and target validation has set the foundation and support for targeting the malarial kinome. Pursuing protein kinases as cancer drug targets has generated a wealth of information on the inhibitory strategies that can be useful for antimalarial drug discovery. In this review, progress on selected protein kinases is described. As the search for novel antimalarials continues, an understanding of the phosphor-regulatory pathways will not only validate protein kinase targets, but also will identify novel chemotypes to thwart malaria drug resistance.

Journal ArticleDOI
11 Oct 2012-PLOS ONE
TL;DR: It is demonstrated that violacein induces kinome reprogramming, overcoming death signaling dysfunctions of intrinsically resistant human leukaemia cells.
Abstract: It is now generally recognised that different modes of programmed cell death (PCD) are intimately linked to the cancerous process. However, the mechanism of PCD involved in cancer chemoprevention is much less clear and may be different between types of chemopreventive agents and tumour cell types involved. Therefore, from a pharmacological view, it is crucial during the earlier steps of drug development to define the cellular specificity of the candidate as well as its capacity to bypass dysfunctional tumoral signalling pathways providing insensitivity to death stimuli. Studying the cytotoxic effects of violacein, an antibiotic dihydro-indolone synthesised by an Amazon river Chromobacterium, we observed that death induced in CD34+/c-Kit+/P-glycoprotein+/MRP1+ TF1 leukaemia progenitor cells is not mediated by apoptosis and/or autophagy, since biomarkers of both types of cell death were not significantly affected by this compound. To clarify the working mechanism of violacein, we performed kinome profiling using peptide arrays to yield comprehensive descriptions of cellular kinase activities. Pro-death activity of violacein is actually carried out by inhibition of calpain and DAPK1 and activation of PKA, AKT and PDK, followed by structural changes caused by endoplasmic reticulum stress and Golgi apparatus collapse, leading to cellular demise. Our results demonstrate that violacein induces kinome reprogramming, overcoming death signaling dysfunctions of intrinsically resistant human leukaemia cells.

Journal ArticleDOI
TL;DR: The structure-guided identification of three series of selective spleen tyrosine kinase inhibitors support the hypothesis that optimizing the interaction between them and a Syk inhibitor molecule would impart high selectivity for Syk over other kinases.
Abstract: A novel approach to design selective spleen tyrosine kinase (Syk) inhibitors is described. Inhibition of spleen tyrosine kinase has attracted much attention as a mechanism for the treatment of autoimmune diseases such as asthma, rheumatoid arthritis, and SLE. Fostamatinib, a Syk inhibitor that successfully completed phase II clinical trials, also exhibits some undesirable side effects. More selective Syk inhibitors could offer safer, alternative treatments. Through a systematic evaluation of the kinome, we identified Pro455 and Asn457 in the Syk ATP binding site as a rare combination among sequence aligned kinases and hypothesized that optimizing the interaction between them and a Syk inhibitor molecule would impart high selectivity for Syk over other kinases. We report the structure-guided identification of three series of selective spleen tyrosine kinase inhibitors that support our hypothesis and offer useful guidance to other researchers in the field.

Journal ArticleDOI
TL;DR: Recent evidence that apart from a scaffolding role, pseudokinases also orchestrate cellular processes as active kinases per se in signalling pathways of malignant cells is discussed.

Journal ArticleDOI
TL;DR: The role of protein kinases in the molecular pathology of different neurodegenerative diseases together with different chemical families that are able to more or less specifically inhibit CK1 and CK2 are discussed in this paper.
Abstract: Following the discovery of the human kinome, protein kinases have become the second most important group of drug targets as they can be modulated by small ligand molecules. Moreover, orally active protein kinase inhibitors have recently reached the market and there are many more in clinical trials. The lack of treatments for neurodegenerative diseases has increased human and financial efforts in the search for new therapeutic targets that could provide new effective drug candidates. The importance of kinases in the molecular pathway of neuronal survival is under study, but different key pathways have been described. New roles for the old casein kinases 1 and 2, currently known as protein kinases CK1 and CK2, have recently been discovered in the molecular pathology of different neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases and amyotrophic lateral sclerosis. The search for specific inhibitors of these enzymes has become an important challenge for the treatment of these devastating diseases. The role of these two kinases in the molecular pathology of different neurodegenerative diseases together with different chemical families that are able to more or less specifically inhibit CK1 and CK2 are discussed in this review. © 2010 Wiley Periodicals, Inc. Med Res Rev 31:924-954, 2011

Journal ArticleDOI
Paul Bamborough1
TL;DR: The prospects for kinase inhibitor drug discovery in oncology and other therapeutic areas is reviewed and opportunities for quality pre-candidate compounds developed for specific indications to find alternative uses should be maximised by early screening through panels of phenotypic assays.
Abstract: Introduction: For well over a decade, significant effort has been devoted to the search for inhibitors of the human protein kinase family. This is increasingly translating into success in the clinic, with five new kinase inhibitor drugs approved since 2011. However, despite encouraging signs in other areas, success has been largely restricted to oncology. Areas covered: This article reviews the prospects for kinase inhibitor drug discovery in oncology and other therapeutic areas. Major topics include the application of kinome profiling and lessons learned from kinase system-based research. With these fields nearing maturity, the validation of kinases as targets or their classification as liabilities is becoming increasingly pertinent. Other topics include a discussion of the properties required of good small molecule kinase probes. Expert opinion: The tractability of protein kinases to small molecule discovery through system-based research is excellent, and adequate selectivity can often be achieved. With...

Journal ArticleDOI
TL;DR: The novel chemogenomic kinase-kernel method reported here predicts activity for new kinases as a weighted average of predicted activities from profile-QSAR models for nearby neighbor kinases, which has been successfully applied in two therapeutic projects to generate predictions and select compounds for activity testing.
Abstract: Reliable in silico prediction methods promise many advantages over experimental high-throughput screening (HTS): vastly lower time and cost, affinity magnitude estimates, no requirement for a physical sample, and a knowledge-driven exploration of chemical space. For the specific case of kinases, given several hundred experimental IC50 training measurements, the empirically parametrized profile-quantitative structure–activity relationship (profile-QSAR) and surrogate AutoShim methods developed at Novartis can predict IC50 with a reliability approaching experimental HTS. However, in the absence of training data, prediction is much harder. The most common a priori prediction method is docking, which suffers from many limitations: It requires a protein structure, is slow, and cannot predict affinity.(1) Highly accurate profile-QSAR(2) models have now been built for roughly 100 kinases covering most of the kinome. Analyzing correlations among neighboring kinases shows that near neighbors share a high degree of...

Journal ArticleDOI
TL;DR: Analysis of the structures and quantification of the protein-ligand interactions couples ligand-induced protein conformations to the number of interactions and to inhibitor selectivity against the human kinome shows that for the design of novel kinase inhibitors, selectivity is best obtained through maximization of the numberof interactions throughout the ATP pocket and the exploitation of specific features in the active site.
Abstract: The p38α mitogen-activated protein kinase regulates the synthesis of pro-inflammatory cytokines in response to stimulation by a diverse set of stress signals. Various different chemotypes and clinical candidates that inhibit p38α function have been reported over the years. In this publication, the novel structure of p38α cocrystallized with the clinical candidate TAK-715 is reported. Owing to the impact of crystallization conditions on the conformation of protein kinases (and in particular p38α), the structures of complexes of p38α with SB-203580, SCIO-469 and VX-745 have also been determined to enable in-depth comparison of ligand-induced protein conformations. The impact of experimental conditions on p38α–inhibitor complex structures, most importantly soaking versus cocrystallization, is discussed. Analysis of the structures and quantification of the protein–ligand inter­actions couples ligand-induced protein conformations to the number of interactions and to inhibitor selectivity against the human kinome. This shows that for the design of novel kinase inhibitors, selectivity is best obtained through maximization of the number of interactions throughout the ATP pocket and the exploitation of specific features in the active site.

Journal ArticleDOI
TL;DR: Family-specific features appear among the most discriminative information sources, which allow the KinMut system to produce accurate results in a reliable and very simple way with minimal supervision.
Abstract: Most of the many mutations described in human protein kinases are tolerated without significant disruption of the corresponding structures or molecular functions, while some of them have been associated to a variety of human diseases, including cancer. In the last decade, a plethora of computational methods to predict the effect of missense single-nucleotide variants (SNVs) have been developed. Still, current high-throughput sequencing efforts and the concomitant need for massive interpretation of protein sequence variants will demand for more efficient and/or accurate computational methods in the forthcoming years. We present KinMut, a support vector machine (SVM) approach, to identify pathogenic mutations in the protein kinase superfamily. KinMut relays on a combination of sequence-derived features that describe mutations at different levels: (1) Gene level: membership to a specific group in Kinbase and the annotation with GO terms; (2) Domain level: annotated PFAM domains; and (3) Residue level: physicochemical features of amino acids, specificity determining positions, and functional annotations from SwissProt and FireDB. The system has been trained with the set of 3492 human kinase mutations in UniProt for which experimental validation of their pathogenic or neutral character exists. In addition, we discuss the relative importance of these independent properties and their combination for the development of a kinase-specific predictor. Finally, we compare KinMut with other state-of-the-art prediction methods. Family-specific features appear among the most discriminative information sources, which allow us to produce accurate results in a reliable and very simple way with minimal supervision. Our study aims to broaden the knowledge on the mechanisms by which mutations in the human kinome contribute to disease with a particular focus in cancer. The classifier as well as further documentation is available at http://kinmut.bioinfo.cnio.es/ .

Journal ArticleDOI
TL;DR: Altered expression of several kinases, including chaperone activity of bc1 complex-like (CABC1) kinase, bromodomain adjacent to zinc finger domain protein 1B (BAZ1B) Kinase, calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D), serine/threonine-protein kinase 24 (STK24), vaccinia-related kinase 3 (VRK3),
Abstract: Kinase domains are the type of protein domain most commonly found in genes associated with tumorigenesis. Because of this, the human kinome (the protein kinase component of the genome) represents a promising source of cancer biomarkers and potential targets for novel anti-cancer therapies. Alterations in the human colon kinome during the progression from normal colon (NC) through adenoma (AD) to adenocarcinoma (AC) were investigated using integrated transcriptomic and proteomic datasets. Two hundred thirty kinase genes and 42 kinase proteins showed differential expression patterns (fold change ≥ 1.5) in at least one tissue pair-wise comparison (AD vs. NC, AC vs. NC, and/or AC vs. AD). Kinases that exhibited similar trends in expression at both the mRNA and protein levels were further analyzed in individual samples of NC (n = 20), AD (n = 39), and AC (n = 24) by quantitative reverse transcriptase PCR. Individual samples of NC and tumor tissue were distinguishable based on the mRNA levels of a set of 20 kinases. Altered expression of several of these kinases, including chaperone activity of bc1 complex-like (CABC1) kinase, bromodomain adjacent to zinc finger domain protein 1B (BAZ1B) kinase, calcium/calmodulin-dependent protein kinase type II subunit delta (CAMK2D), serine/threonine-protein kinase 24 (STK24), vaccinia-related kinase 3 (VRK3), and TAO kinase 3 (TAOK3), has not been previously reported in tumor tissue. These findings may have diagnostic potential and may lead to the development of novel targeted therapeutic interventions for colorectal cancer.