scispace - formally typeset
Search or ask a question

Showing papers on "PI3K/AKT/mTOR pathway published in 2004"


Journal ArticleDOI
TL;DR: Both the upstream components of the signaling pathway(s) that activates mammalian TOR (mTOR) and the downstream targets that affect protein synthesis are described.
Abstract: The evolutionarily conserved checkpoint protein kinase, TOR (target of rapamycin), has emerged as a major effector of cell growth and proliferation via the regulation of protein synthesis. Work in the last decade clearly demonstrates that TOR controls protein synthesis through a stunning number of downstream targets. Some of the targets are phosphorylated directly by TOR, but many are phosphorylated indirectly. In this review, we summarize some recent developments in this fast-evolving field. We describe both the upstream components of the signaling pathway(s) that activates mammalian TOR (mTOR) and the downstream targets that affect protein synthesis. We also summarize the roles of mTOR in the control of cell growth and proliferation, as well as its relevance to cancer and synaptic plasticity.

4,074 citations


Journal ArticleDOI
30 Apr 2004-Cell
TL;DR: It is shown that in cultured myotubes undergoing atrophy, the activity of the PI3K/AKT pathway decreases, leading to activation of Foxo transcription factors and atrogin-1 induction.

2,657 citations


Journal ArticleDOI
TL;DR: This work shows that mammalian target of rapamycin (mTOR) is sequestered in polyglutamine aggregates in cell models, transgenic mice and human brains, and provides proof-of-principle for the potential of inducing autophagy to treat Huntington disease.
Abstract: Huntington disease is one of nine inherited neurodegenerative disorders caused by a polyglutamine tract expansion. Expanded polyglutamine proteins accumulate abnormally in intracellular aggregates. Here we show that mammalian target of rapamycin (mTOR) is sequestered in polyglutamine aggregates in cell models, transgenic mice and human brains. Sequestration of mTOR impairs its kinase activity and induces autophagy, a key clearance pathway for mutant huntingtin fragments. This protects against polyglutamine toxicity, as the specific mTOR inhibitor rapamycin attenuates huntingtin accumulation and cell death in cell models of Huntington disease, and inhibition of autophagy has the converse effects. Furthermore, rapamycin protects against neurodegeneration in a fly model of Huntington disease, and the rapamycin analog CCI-779 improved performance on four different behavioral tasks and decreased aggregate formation in a mouse model of Huntington disease. Our data provide proof-of-principle for the potential of inducing autophagy to treat Huntington disease.

2,335 citations


Journal ArticleDOI
TL;DR: The PI3K/Akt pathway is involved in many of the mechanisms targeted by these new drugs, thus a better understanding of this crossroad can help to fully exploit the potential benefits of these new agents.

1,956 citations


Journal ArticleDOI
TL;DR: Akt is not only capable of activating prosynthetic pathways, as previously demonstrated, but is simultaneously and dominantly able to suppress catabolic pathways, allowing it to prevent glucocorticoid and denervation-induced muscle atrophy.

1,768 citations


Journal ArticleDOI
TL;DR: In this paper, PTEN activation contributes to trastuzumab's antitumor activity and PI3K inhibitors rescued PTEN loss-induced trastusumab resistance.

1,635 citations


Journal ArticleDOI
TL;DR: It is shown that mTOR inhibition by hypoxia requires the TSC1/TSC2 tumor suppressor complex and the Hypoxia-inducible gene REDD1/RTP801 to be inhibited, and that down-regulation of mTOR activity by hyp oxia requires de novo mRNA synthesis and correlates with increased expression of the hypoxIA-Inducible REDD 1 gene.
Abstract: Mammalian target of rapamycin (mTOR) is a central regulator of protein synthesis whose activity is modulated by a variety of signals. Energy depletion and hypoxia result in mTOR inhibition. While energy depletion inhibits mTOR through a process involving the activation of AMP-activated protein kinase (AMPK) by LKB1 and subsequent phosphorylation of TSC2, the mechanism of mTOR inhibition by hypoxia is not known. Here we show that mTOR inhibition by hypoxia requires the TSC1/TSC2 tumor suppressor complex and the hypoxia-inducible gene REDD1/RTP801. Disruption of the TSC1/TSC2 complex through loss of TSC1 or TSC2 blocks the effects of hypoxia on mTOR, as measured by changes in the mTOR targets S6K and 4E-BP1, and results in abnormal accumulation of Hypoxia-inducible factor (HIF). In contrast to energy depletion, mTOR inhibition by hypoxia does not require AMPK or LKB1. Down-regulation of mTOR activity by hypoxia requires de novo mRNA synthesis and correlates with increased expression of the hypoxia-inducible REDD1 gene. Disruption of REDD1 abrogates the hypoxia-induced inhibition of mTOR, and REDD1 overexpression is sufficient to down-regulate S6K phosphorylation in a TSC1/TSC2-dependent manner. Inhibition of mTOR function by hypoxia is likely to be important for tumor suppression as TSC2-deficient cells maintain abnormally high levels of cell proliferation under hypoxia.

1,299 citations


Journal ArticleDOI
TL;DR: Future investigations are expected to reveal that a balance between positive and negative factors regulates ARE-mediated gene expression and induction, and a complete mechanism of signal transduction from antioxidants and xenobiotics to the transcription factors, such as Nrf2, that bind to ARE.

1,163 citations


Journal ArticleDOI
TL;DR: Specific inhibition of the activation of Akt may be a valid approach to treating human malignancies and overcoming the resistance of cancer cells to radiation or chemotherapy.
Abstract: Phosphatidylinositol-3-kinase (PI3K) is a lipid kinase and generates phosphatidylinositol-3,4,5-trisphosphate (PI(3, 4, 5)P3). PI(3, 4, 5)P3 is a second messenger essential for the translocation of Akt to the plasma membrane where it is phosphorylated and activated by phosphoinositide-dependent kinase (PDK) 1 and PDK2. Activation of Akt plays a pivotal role in fundamental cellular functions such as cell proliferation and survival by phosphorylating a variety of substrates. In recent years, it has been reported that alterations to the PI3K-Akt signaling pathway are frequent in human cancer. Constitutive activation of the PI3K-Akt pathway occurs due to amplification of the PIK3C gene encoding PI3K or the Akt gene, or as a result of mutations in components of the pathway, for example PTEN (phosphatase and tensin homologue deleted on chromosome 10), which inhibit the activation of Akt. Several small molecules designed to specifically target PI3K-Akt have been developed, and induced cell cycle arrest or apoptosis in human cancer cells in vitro and in vivo. Moreover, the combination of an inhibitor with various cytotoxic agents enhances the anti-tumor efficacy. Therefore, specific inhibition of the activation of Akt may be a valid approach to treating human malignancies and overcoming the resistance of cancer cells to radiation or chemotherapy.

1,141 citations


Journal ArticleDOI
TL;DR: It is reported that LKB1 is required for repression of mTOR under low ATP conditions in cultured cells in an AMPK- and TSC2-dependent manner, and that L KB1 null MEFs and the hamartomatous gastrointestinal polyps from Lkb1 mutant mice show elevated signaling downstream of m TOR.

1,068 citations


Journal ArticleDOI
16 Apr 2004-Cell
TL;DR: It is suggested that the activity of this network confers resistance to TGF-beta-mediated cytostasis during the development of the telencephalic neuroepithelium and in glioblastoma brain tumor cells.

Journal ArticleDOI
18 Mar 2004-Nature
TL;DR: It is shown that Akt promotes tumorigenesis and drug resistance by disrupting apoptosis, and that disruption of Akt signalling using the mTOR inhibitor rapamycin reverses chemoresistance in lymphomas expressing Akt, but not in those with other apoptotic defects.
Abstract: Evading apoptosis is considered to be a hallmark of cancer, because mutations in apoptotic regulators invariably accompany tumorigenesis. Many chemotherapeutic agents induce apoptosis, and so disruption of apoptosis during tumour evolution can promote drug resistance. For example, Akt is an apoptotic regulator that is activated in many cancers and may promote drug resistance in vitro. Nevertheless, how Akt disables apoptosis and its contribution to clinical drug resistance are unclear. Using a murine lymphoma model, we show that Akt promotes tumorigenesis and drug resistance by disrupting apoptosis, and that disruption of Akt signalling using the mTOR inhibitor rapamycin reverses chemoresistance in lymphomas expressing Akt, but not in those with other apoptotic defects. eIF4E, a translational regulator that acts downstream of Akt and mTOR, recapitulates Akt's action in tumorigenesis and drug resistance, but is unable to confer sensitivity to rapamycin and chemotherapy. These results establish Akt signalling through mTOR and eIF4E as an important mechanism of oncogenesis and drug resistance in vivo, and reveal how targeting apoptotic programmes can restore drug sensitivity in a genotype-dependent manner.

Journal ArticleDOI
TL;DR: It is reported that mTOR inhibition induced apoptosis of epithelial cells and the complete reversal of a neoplastic phenotype in the prostate of mice expressing human AKT1 in the ventral prostate, and that clinical resistance to mTOR inhibitors may emerge through BCL2 expression and/or upregulation of HIF-1α activity.
Abstract: Loss of PTEN function leads to activation of phosphoinositide 3-kinase (PI3K) signaling and Akt. Clinical trials are now testing whether mammalian target of rapamycin (mTOR) inhibition is useful in treating PTEN-null cancers. Here, we report that mTOR inhibition induced apoptosis of epithelial cells and the complete reversal of a neoplastic phenotype in the prostate of mice expressing human AKT1 in the ventral prostate. Induction of cell death required the mitochondrial pathway, as prostate-specific coexpression of BCL2 blocked apoptosis. Thus, there is an mTOR-dependent survival signal required downstream of Akt. Bcl2 expression, however, only partially restored intraluminal cell growth in the setting of mTOR inhibition. Expression profiling showed that Hif-1 alpha targets, including genes encoding most glycolytic enzymes, constituted the dominant transcriptional response to AKT activation and mTOR inhibition. These data suggest that the expansion of AKT-driven prostate epithelial cells requires mTOR-dependent survival signaling and activation of HIF-1 alpha, and that clinical resistance to mTOR inhibitors may emerge through BCL2 expression and/or upregulation of HIF-1 alpha activity.

Journal ArticleDOI
TL;DR: It is raised the possibility that drugs targeting these kinases, or PI3K itself, might have significant therapeutic activity in PTEN-null cancers and phase I and phase II trials of inhibitors of mTOR are underway.
Abstract: Genetic alterations targeting the PTEN tumor suppressor gene are among the most frequently noted somatic mutations in human cancers. Such lesions have been noted in cancers of the prostate and endometrium and in glioblastoma multiforme, among many others. Moreover, germline mutation of PTEN leads to the development of the related hereditary cancer predisposition syndromes, Cowden disease, and Bannayan-Zonana syndrome, wherein breast and thyroid cancer incidence is elevated. The protein product, PTEN, is a lipid phosphatase, the enzymatic activity of which primarily serves to remove phosphate groups from key intracellular phosphoinositide signaling molecules. This activity normally serves to restrict growth and survival signals by limiting activity of the phosphoinositide-3 kinase (PI3K) pathway. Multiple lines of evidence support the notion that this function is critical to the ability of PTEN to maintain cell homeostasis. Indeed, the absence of functional PTEN in cancer cells leads to constitutive activa...

Journal ArticleDOI
TL;DR: It is demonstrated that, as for the regulation of cell growth and cell size, the S6K1 and 4E-BP1/eIF4E pathways each represent critical mediators of mTOR-dependent cell cycle control.
Abstract: The mammalian target of rapamycin (mTOR) integrates nutrient and mitogen signals to regulate cell growth (increased cell mass and cell size) and cell division. The immunosuppressive drug rapamycin inhibits cell cycle progression via inhibition of mTOR; however, the signaling pathways by which mTOR regulates cell cycle progression have remained poorly defined. Here we demonstrate that restoration of mTOR signaling (by using a rapamycin-resistant mutant of mTOR) rescues rapamycin-inhibited G1-phase progression, and restoration of signaling along the mTOR-dependent S6K1 or 4E-BP1/eukaryotic translation initiation factor 4E (eIF4E) pathways provides partial rescue. Furthermore, interfering RNA-mediated reduction of S6K1 expression or overexpression of mTOR-insensitive 4E-BP1 isoforms that block eIF4E activity inhibit G1-phase progression individually and additively. Thus, the activities of both the S6K1 and 4E-BP1/eIF4E pathways are required for and independently mediate mTOR-dependent G1-phase progression. In addition, overexpression of constitutively active mutants of S6K1 or wild-type eIF4E accelerates serum-stimulated G1-phase progression, and stable expression of wild-type S6K1 confers a proliferative advantage in low-serum-containing media, suggesting that the activity of each of these pathways is limiting for cell proliferation. These data demonstrate that, as for the regulation of cell growth and cell size, the S6K1 and 4E-BP1/eIF4E pathways each represent critical mediators of mTOR-dependent cell cycle control.

Journal ArticleDOI
TL;DR: Novel connections between the metabolic effects of Akt and its control of survival have recently been made and the mechanisms for PI 3-kinase survival signalling are becoming clear.

Journal ArticleDOI
TL;DR: It is demonstrated herein that constitutive activation of the Rheb/mTOR/S6K cassette, whether by genetic deletion of TSC1 or TSC2 or by ectopic expression of RheB, is sufficient to induce insulin resistance.

Journal ArticleDOI
TL;DR: It is shown that mice deficient for S 6K1 or S6K2 are born at the expected Mendelian ratio, and analysis of S6 phosphorylation in the cytoplasm and nucleoli of cells derived from the distinct S7K genotypes suggests that both kinases are required for full S6osphorylation but that S6k2 may be more prevalent in contributing to this response.
Abstract: Recent studies showed that the 40S ribosomal protein S6 kinase (S6K) p70S6K/p85S6K, termed S6K1 (51), is a major effector of cell growth. This conclusion stems from gene deletion studies with Drosophila (39) and with mice (51) as well as recent studies with cell cultures (11). The loss of the Drosophila S6K (dS6K) gene is semilethal, with the few surviving adults having a severely reduced body size. The larvae of such flies exhibit a long developmental delay, consistent with a twofold increase in cell cycle doubling times. The few surviving adults are quite lethargic, living no longer than 2 weeks, and females are sterile. Surprisingly, the reduction in mass is strictly due to a decrease in cell size rather than to a decrease in cell number (39). In mice, removal of this kinase is not lethal, but the mice are approximately 20% smaller at birth (51). Such mice exhibit normal fasting glucose levels but are mildly glucose intolerant due to markedly reduced levels of circulating insulin (42). Reduced insulin levels are caused by a reduction in pancreatic endocrine mass and an impairment of insulin secretion, which can be traced to a selective reduction in β-cell size. Unexpectedly, the effects on body mass and hypoinsulinemia do not appear to be attributable to a reduction in S6 phosphorylation, as this response proved to be largely intact in S6K1-deficient animals (51). However, S6 phosphorylation in such animals was still sensitive to the bacterial macrolide rapamycin (51), which inhibits the mammalian target of rapamycin (mTOR) (1, 7, 16, 48), the upstream S6K1 kinase (4, 8, 18), suggesting the existence of a second S6K. Subsequent searches of expressed sequence tag databases and biochemical studies led to the identification of S6K2, which exhibited overall homology of over 80% with S6K1 in the highly conserved kinase and linker domains (17, 47, 51). In all tissues examined from S6K1-deficient mice, S6K2 transcripts were upregulated (51). From this observation, it was reasoned that S6K1 and S6K2 functions were redundant and that a deletion of the S6K1 gene led to a compensatory increase in the expression of S6K2. In parallel studies, it was demonstrated that rapamycin suppressed the serum-induced translational upregulation of a family of mRNAs which contain a polypyrimidine tract at their 5′ end (5′-terminal oligopyrimidine [5′TOP] mRNAs) (20, 55). These mRNAs largely code for components of the translational apparatus, most notably, ribosomal proteins (37). Earlier studies had shown that the translation of such transcripts is under selective translational control (22) and requires an intact 5′TOP tract (19, 49). In addition, a dominant interfering allele of S6K1 inhibited the mitogen-induced translational upregulation of 5′TOP mRNAs to the same extent as rapamycin, whereas an activated allele of S6K1, which exhibits a substantial degree of rapamycin resistance, largely protected these transcripts from the inhibitory effects of rapamycin (19, 49). Seemingly consistent with these arguments, in embryonic stem (ES) cells from which S6K1 had been homologously deleted by selection with high doses of G418, serum no longer had an effect on the upregulation of 5′TOP mRNAs, nor was there a redistribution of 5′TOP mRNAs from polysomes to nonpolysomes in the presence of rapamycin (24). However, S6 phosphorylation was initially reported to be abolished in these cells (24), despite the fact that it was largely intact in cells and tissues derived from S6K1−/− mice (51). This difference seemed to be resolved in subsequent studies, where S6 phosphorylation was detected in these same S6K1−/− ES cells and S6K2 was present and active (31, 60). Despite these observations, it was again recently reported that S6 phosphorylation was absent from these same cells (53). Furthermore, it was also claimed in the latter study that S6K activation, S6 phosphorylation, and rapamycin had little impact on 5′TOP mRNA translation in PC12 cells (53), although others working with these same cells had reported earlier that rapamycin treatment abolished the selective recruitment of these transcripts from small to large polysomes (44). Obviously, cells lacking both S6K1 and S6K2 would facilitate such studies. Therefore, we set out to delete the S6K2 gene from mice and to determine whether we could generate S6K1−/−/S6K2−/− mice. Here we report on the deletion of the S6K2 gene and the effects of deleting both S6K1 and S6K2 on animal growth and viability as well as on S6 phosphorylation, cell proliferation, and 5′TOP mRNA translation.

Journal ArticleDOI
TL;DR: A regulatory mechanism by which the Ras/MAPK and PI3K pathways converge on the tumor suppressor tuberin to inhibit its function is unveiled.
Abstract: Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations in either of the two tumor suppressor genes TSC1 or TSC2, which encode hamartin and tuberin, respectively. Tuberin and hamartin form a complex that inhibits signaling by the mammalian target of rapamycin (mTOR), a critical nutrient sensor and regulator of cell growth and proliferation. Phosphatidylinositol 3-kinase (PI3K) inactivates the tumor suppressor complex and enhances mTOR signaling by means of phosphorylation of tuberin by Akt. Importantly, cellular transformation mediated by phorbol esters and Ras isoforms that poorly activate PI3K promote tumorigenesis in the absence of Akt activation. In this study, we show that phorbol esters and activated Ras also induce the phosphorylation of tuberin and collaborates with the nutrient-sensing pathway to regulate mTOR effectors, such as p70 ribosomal S6 kinase 1 (S6K1). The mitogen-activated protein kinase (MAPK)-activated kinase, p90 ribosomal S6 kinase (RSK) 1, was found to interact with and phosphorylate tuberin at a regulatory site, Ser-1798, located at the evolutionarily conserved C terminus of tuberin. RSK1 phosphorylation of Ser-1798 inhibits the tumor suppressor function of the tuberin/hamartin complex, resulting in increased mTOR signaling to S6K1. Together, our data unveil a regulatory mechanism by which the Ras/MAPK and PI3K pathways converge on the tumor suppressor tuberin to inhibit its function.

Journal ArticleDOI
TL;DR: The long-term antioxidant effect of carnosol was partially blocked by PI3K or HO-1 inhibitors, further demonstrating that carnosols attenuates oxidative stress through a pathway that involves PI 3K and HO- 1.

Journal Article
TL;DR: In this article, the authors used oligonucleotide-based DNA microarrays to analyze transcriptional changes resulting from constitutive Ras signaling and found that Ras signaling leads to a significant induction of Interleukin-8 (IL-8) mRNA, which is accompanied by a corresponding increase in protein levels.
Abstract: 1749 Ras proteins are important regulators of cell proliferation and their constitutive activation is a key event in cancer development. To discover novel effector pathways that might contribute to the oncogenic properties of Ras, we used oligonucleotide-based DNA microarrays to analyze transcriptional changes resulting from constitutive Ras signaling. We performed the expression analyses with HeLa stable cell lines expressing activated RasG12→V transgenes under a tetracycline responsive promoter (Tet-Off™ Expression System). This system not only mediates tight on/off regulation of gene expression; it also permits the titration of protein levels on a single cell basis allowing the study of dose dependent aspects of gene activity. Ras signaling leads to a significant induction of Interleukin-8 (IL-8) mRNA, which is accompanied by a corresponding increase in protein levels. IL-8 is a chemotactic factor for leukocytes and closely associated with the initiation of an acute inflammatory response. Analysis of signal transduction pathways that link Ras to IL-8 up-regulation suggests a direct effect of Ras on the IL-8 promoter, mediated by the synergistic activation of both MAPK-cascades and the PI3K > NFκB pathway. In addition, the Ras-induced accumulation of IL-8 protein is dependent on the activation of p38 MAP-kinase through a post-transcriptional mechanism involving an increase in IL-8 mRNA stability. Investigation of the functional importance of IL-8 in the context of tumorigenesis shows that IL-8 plays a decisive role in RasV12-mediated acceleration of tumor growth in a nude mouse xenograft model. Ablation of IL-8 function is accompanied by a significant reduction in tumor size. This effect is not due to decreased cell proliferation rates, since we observe no change in the mitogenic index of tumors after inhibition of IL-8. However, tumors devoid of functional IL-8 show a marked reduction in vascularization accompanied by vast tissue necrosis. These observations can be correlated with an IL-8-mediated initiation of an early inflammatory reaction in developing neoplasms that triggers tumor vascularization. In addition, IL-8 may act directly to support angiogenesis by promoting endothelial cell proliferation and migration. These results provide a novel mechanism by which tumor cells harboring oncogenic Ras can appropriate inflammatory mediators to recruit immune cells to the tumor site and facilitate neo-angiogenesis, thus setting the stage for subsequent progression to malignancy.

Journal ArticleDOI
01 Feb 2004-Leukemia
TL;DR: This review will tie together three important signal transduction pathways involved in the regulation of hematopoietic cell growth and indicate how their expression is dysregulated by the BCR-ABL oncoprotein.
Abstract: The roles of the JAK/STAT, Raf/MEK/ERK and PI3K/Akt signal transduction pathways and the BCR-ABL oncoprotein in leukemogenesis and their importance in the regulation of cell cycle progression and apoptosis are discussed in this review. These pathways have evolved regulatory proteins, which serve to limit their proliferative and antiapoptotic effects. Small molecular weight cell membrane-permeable drugs that target these pathways have been developed for leukemia therapy. One such example is imatinib mesylate, which targets the BCR-ABL kinase as well as a few structurally related kinases. This drug has proven to be effective in the treatment of CML patients. However, leukemic cells have evolved mechanisms to become resistant to this drug. A means to combat drug resistance is to target other prominent signaling components involved in the pathway or to inhibit BCR-ABL by other mechanisms. Treatment of imatinib-resistant leukemia cells with drugs that target Ras (farnysyl transferase inhibitors) or with the protein destabilizer geldanamycin has proven to be a means to inhibit the growth of resistant cells. This review will tie together three important signal transduction pathways involved in the regulation of hematopoietic cell growth and indicate how their expression is dysregulated by the BCR-ABL oncoprotein.

Journal ArticleDOI
TL;DR: The aim of the present review is to give an overview of autophagy and to discuss its regulation by activators and effectors of mTOR and GTPases.

Journal ArticleDOI
TL;DR: This review covers recent advances in metal-induced generation of reactive oxygen species; the receptors, kinases, and nuclear transcription factors affected by metals andMetal-induced oxidative stress; and global cellular phenomena associated with metal- induced ROS production and gene expression.

Journal ArticleDOI
TL;DR: An important component of growth stimulation by IGF-I, through the PI3K-Akt pathway, is its ability to rapidly suppress transcription of the atrophy-related E3 atrogin-1 and other atrogenes and degradation of myofibrillar proteins.
Abstract: Muscle atrophy results primarily from accelerated protein degradation and is associated with increased expression of two muscle-specific ubiquitin ligases (E3s): atrogin-1 and muscle ring finger 1 (MuRF1). Glucocorticoids are essential for many types of muscle atrophy, and their effects are opposite to those of insulin-like growth factor I (IGF-I) and insulin, which promote growth. In myotubes, dexamethasone (Dex) inhibited growth and enhanced breakdown of long-lived cell proteins, especially myofibrillar proteins (as measured by 3-methylhistidine release), while also increasing atrogin-1 and MuRF1 mRNA. Conversely, IGF-I suppressed protein degradation and prevented the Dex-induced increase in proteolysis. IGF-I rapidly reduced atrogin-1 expression within 1 h by blocking mRNA synthesis without affecting mRNA degradation, whereas IGF-I decreased MuRF1 mRNA slowly. IGF-I and insulin also blocked Dex induction of these E3s and several other atrophy-related genes ("atrogenes"). Changes in overall proteolysis with Dex and IGF-I correlated tightly with changes in atrogin-1 mRNA content, but not with changes in MuRF1 mRNA. IGF-I activates the phosphatidylinositol 3-kinase (PI3K)-Akt pathway, and inhibition of this pathway [but not the calcineurin-nuclear factor of activated T cell (NFAT) or the MEK-ERK pathway] increased proteolysis and atrogin-1 mRNA expression. Thus an important component of growth stimulation by IGF-I, through the PI3K-Akt pathway, is its ability to rapidly suppress transcription of the atrophy-related E3 atrogin-1 and other atrogenes and degradation of myofibrillar proteins.

Journal ArticleDOI
TL;DR: Deletion of the C-terminal six amino acids of mTOR, which are essential for kinase activity, resulted in reduced cell size and proliferation arrest in embryonic stem cells, and showed that mTOR controls both cell Size and proliferation in early mouse embryos and embryonicstem cells.
Abstract: TOR is a serine-threonine kinase that was originally identified as a target of rapamycin in Saccharomyces cerevisiae and then found to be highly conserved among eukaryotes. In Drosophila melanogaster, inactivation of TOR or its substrate, S6 kinase, results in reduced cell size and embryonic lethality, indicating a critical role for the TOR pathway in cell growth control. However, the in vivo functions of mammalian TOR (mTOR) remain unclear. In this study, we disrupted the kinase domain of mouse mTOR by homologous recombination. While heterozygous mutant mice were normal and fertile, homozygous mutant embryos died shortly after implantation due to impaired cell proliferation in both embryonic and extraembryonic compartments. Homozygous blastocysts looked normal, but their inner cell mass and trophoblast failed to proliferate in vitro. Deletion of the C-terminal six amino acids of mTOR, which are essential for kinase activity, resulted in reduced cell size and proliferation arrest in embryonic stem cells. These data show that mTOR controls both cell size and proliferation in early mouse embryos and embryonic stem cells.

Journal ArticleDOI
TL;DR: This work shows that the initiation factor of translation (eIF-4E), a downstream effector of mTOR, has oncogenic effects in vivo and cooperates with c-Myc in B-cell lymphomagenesis, and finds that c- myc overrides eIF- 4E-induced cellular senescence, whereas eIF -4E antagonizes c-myc-dependent apoptosis in vivo.
Abstract: The mammalian target of rapamycin, mTOR, regulates cell growth and proliferation. Here we show that the initiation factor of translation (eIF-4E), a downstream effector of mTOR, has oncogenic effects in vivo and cooperates with c-Myc in B-cell lymphomagenesis. We found that c-Myc overrides eIF-4E-induced cellular senescence, whereas eIF-4E antagonizes c-Myc-dependent apoptosis in vivo. Our results implicate activation of eIF-4E as a key event in oncogenic transformation by phosphoinositide-3 kinase and Akt.

Journal ArticleDOI
TL;DR: The current evidence suggests that all these mechanisms are triggered by polyphenols with specific structures, although the structural requirements may be different from one effect to the other, and that they all contribute to the vasoprotective,Anti-angiogenic, anti-atherogenic, vasorelaxant and anti-hypertensive effects of acute or chronic administration of plant polyphenol found in vivo in animals and in patients.

Journal ArticleDOI
TL;DR: It is shown that LKB1, the gene mutated in PJS, acts as a tumor suppressor by activating TSC2, the Gene mutated in TSC, which suggests that PJS and other benign tumor syndromes could be caused by dysregulation of the TSC 2/mTOR pathway.
Abstract: Tuberous sclerosis complex (TSC) and Peutz-Jeghers syndrome (PJS) are dominantly inherited benign tumor syndromes that share striking histopathological similarities. Here we show that LKB1, the gene mutated in PJS, acts as a tumor suppressor by activating TSC2, the gene mutated in TSC. Like TSC2, LKB1 inhibits the phosphorylation of the key translational regulators S6K and 4EBP1. Furthermore, we show that LKB1 activates TSC2 through the AMP-dependent protein kinase (AMPK), indicating that LKB1 plays a role in cell growth regulation in response to cellular energy levels. Our results suggest that PJS and other benign tumor syndromes could be caused by dysregulation of the TSC2/mTOR pathway.

Journal ArticleDOI
TL;DR: These studies implicate RAB25, and thus the RAB family of small G proteins, in aggressiveness of epithelial cancers.
Abstract: High-density array comparative genomic hybridization (CGH) showed amplification of chromosome 1q22 centered on the RAB25 small GTPase, which is implicated in apical vesicle trafficking, in approximately half of ovarian and breast cancers. RAB25 mRNA levels were selectively increased in stage III and IV serous epithelial ovarian cancers compared to other genes within the amplified region, implicating RAB25 as a driving event in the development of the amplicon. Increased DNA copy number or RNA level of RAB25 was associated with markedly decreased disease-free survival or overall survival in ovarian and breast cancers, respectively. Forced expression of RAB25 markedly increased anchorage-dependent and anchorage-independent cell proliferation, prevented apoptosis and anoikis, including that induced by chemotherapy, and increased aggressiveness of cancer cells in vivo. The inhibition of apoptosis was associated with a decrease in expression of the proapoptotic molecules, BAK and BAX, and activation of the antiapoptotic phosphatidylinositol 3 kinase (PI3K) and AKT pathway, providing potential mechanisms for the effects of RAB25 on tumor aggressiveness. Overall, these studies implicate RAB25, and thus the RAB family of small G proteins, in aggressiveness of epithelial cancers.