scispace - formally typeset
Search or ask a question

Showing papers on "Transcription (biology) published in 2004"


Journal ArticleDOI
TL;DR: In this paper, quantitative real-time PCR was used to determine the mRNA transcription profiles of 13 putative reference genes, comparing their transcription in 16 different tissues and in CCRF-HSB-2 cells stimulated with 12-Otetradecanoylphorbol-13-acetate and ionomycin.

1,582 citations


Journal ArticleDOI
TL;DR: The role of NAD+, the unusual products of the deacetylation reaction, the Sir2 structure, and the Sir1 and Sir2 chemical inhibitors and activators that were recently identified are discussed.
Abstract: ▪ Abstract The yeast SIR protein complex has been implicated in transcription silencing and suppression of recombination. The Sir complex represses transcription at telomeres, mating-type loci, and ribosomal DNA. Unlike SIR3 and SIR4, the SIR2 gene is highly conserved in organisms ranging from archaea to humans. Interestingly, Sir2 is active as an NAD+-dependent deacetylase, which is broadly conserved from bacteria to higher eukaryotes. In this review, we discuss the role of NAD+, the unusual products of the deacetylation reaction, the Sir2 structure, and the Sir2 chemical inhibitors and activators that were recently identified. We summarize the current knowledge of the Sir2 homologs from different organisms, and finally we discuss the role of Sir2 in caloric restriction and aging.

1,521 citations


Journal ArticleDOI
18 Jun 2004-Science
TL;DR: A model in which the balance between promoter activation and transcription influences the variability in messenger RNA levels is proposed, which suggests that noise is an evolvable trait that can be optimized to balance fidelity and diversity in eukaryotic gene expression.
Abstract: Noise, or random fluctuations, in gene expression may produce variability in cellular behavior. To measure the noise intrinsic to eukaryotic gene expression, we quantified the differences in expression of two alleles in a diploid cell. We found that such noise is gene-specific and not dependent on the regulatory pathway or absolute rate of expression. We propose a model in which the balance between promoter activation and transcription influences the variability in messenger RNA levels. To confirm the predictions of our model, we identified both cis- and trans-acting mutations that alter the noise of gene expression. These mutations suggest that noise is an evolvable trait that can be optimized to balance fidelity and diversity in eukaryotic gene expression.

1,471 citations


Journal ArticleDOI
27 Feb 2004-Science
TL;DR: This work used chromatin immunoprecipitation combined with promoter microarrays to identify systematically the genes occupied by the transcriptional regulators HNF1α, HNF4α, and HNF6, together with RNA polymerase II, in human liver and pancreatic islets.
Abstract: The transcriptional regulatory networks that specify and maintain human tissue diversity are largely uncharted. To gain insight into this circuitry, we used chromatin immunoprecipitation combined with promoter microarrays to identify systematically the genes occupied by the transcriptional regulators HNF1α, HNF4α, and HNF6, together with RNA polymerase II, in human liver and pancreatic islets. We identified tissue-specific regulatory circuits formed by HNF1α, HNF4α, and HNF6 with other transcription factors, revealing how these factors function as master regulators of hepatocyte and islet transcription. Our results suggest how misregulation of HNF4α can contribute to type 2 diabetes.

1,328 citations


Journal ArticleDOI
TL;DR: The contribution of dietary folate and methylene terahydrofolate reductase polymorphisms to methylation patterns in normal and cancer tissues is under intense investigation and may be of potential use in early detection of tumors and for determining the prognosis.
Abstract: DNA methylation is an important regulator of gene transcription, and its role in carcinogenesis has been a topic of considerable interest in the last few years. Alterations in DNA methylation are common in a variety of tumors as well as in development. Of all epigenetic modifications, hypermethylation, which represses transcription of the promoter regions of tumor suppressor genes leading to gene silencing, has been most extensively studied. However, global hypomethylation has also been recognized as a cause of oncogenesis. New information concerning the mechanism of methylation and its control has led to the discovery of many regulatory proteins and enzymes. The contribution of dietary folate and methylene terahydrofolate reductase polymorphisms to methylation patterns in normal and cancer tissues is under intense investigation. As methylation occurs early and can be detected in body fluids, it may be of potential use in early detection of tumors and for determining the prognosis. Because DNA methylation...

1,311 citations


Journal ArticleDOI
TL;DR: The complete NAC recognition sequence, containing CATGT and harboring CACG as the core DNA binding site is determined, which indicates that other interacting factors may be necessary for the induction of erd1 in Arabidopsis under stress conditions.
Abstract: The MYC-like sequence CATGTG plays an important role in the dehydration-inducible expression of the Arabidopsis thaliana EARLY RESPONSIVE TO DEHYDRATION STRESS 1 (ERD1) gene, which encodes a ClpA (ATP binding subunit of the caseinolytic ATP-dependent protease) homologous protein. Using the yeast one-hybrid system, we isolated three cDNA clones encoding proteins that bind to the 63-bp promoter region of erd1, which contains the CATGTG motif. These three cDNA clones encode proteins named ANAC019, ANAC055, and ANAC072, which belong to the NAC transcription factor family. The NAC proteins bound specifically to the CATGTG motif both in vitro and in vivo and activated the transcription of a beta-glucuronidase (GUS) reporter gene driven by the 63-bp region containing the CATGTG motif in Arabidopsis T87 protoplasts. The expression of ANAC019, ANAC055, and ANAC072 was induced by drought, high salinity, and abscisic acid. A histochemical assay using P(NAC)-GUS fusion constructs showed that expression of the GUS reporter gene was localized mainly to the leaves of transgenic Arabidopsis plants. Using the yeast one-hybrid system, we determined the complete NAC recognition sequence, containing CATGT and harboring CACG as the core DNA binding site. Microarray analysis of transgenic plants overexpressing either ANAC019, ANAC055, or ANAC072 revealed that several stress-inducible genes were upregulated in the transgenic plants, and the plants showed significantly increased drought tolerance. However, erd1 was not upregulated in the transgenic plants. Other interacting factors may be necessary for the induction of erd1 in Arabidopsis under stress conditions.

1,286 citations


Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Single-cell time-lapse imaging and computational modeling of NF-κB (RelA) localization showed asynchronous oscillations following cell stimulation that decreased in frequency with increased IκBα transcription.
Abstract: Signaling by the transcription factor nuclear factor kappa B (NF-kappaB) involves its release from inhibitor kappa B (IkappaB) in the cytosol, followed by translocation into the nucleus. NF-kappaB regulation of IkappaBalpha transcription represents a delayed negative feedback loop that drives oscillations in NF-kappaB translocation. Single-cell time-lapse imaging and computational modeling of NF-kappaB (RelA) localization showed asynchronous oscillations following cell stimulation that decreased in frequency with increased IkappaBalpha transcription. Transcription of target genes depended on oscillation persistence, involving cycles of RelA phosphorylation and dephosphorylation. The functional consequences of NF-kappaB signaling may thus depend on number, period, and amplitude of oscillations.

1,146 citations


Journal ArticleDOI
TL;DR: It is shown that, during transcription in vivo, distal genes colocalize to the same transcription factory at high frequencies.
Abstract: The intranuclear position of many genes has been correlated with their activity state, suggesting that migration to functional subcompartments may influence gene expression. Indeed, nascent RNA production and RNA polymerase II seem to be localized into discrete foci or 'transcription factories'. Current estimates from cultured cells indicate that multiple genes could occupy the same factory, although this has not yet been observed. Here we show that, during transcription in vivo, distal genes colocalize to the same transcription factory at high frequencies. Active genes are dynamically organized into shared nuclear subcompartments, and movement into or out of these factories results in activation or abatement of transcription. Thus, rather than recruiting and assembling transcription complexes, active genes migrate to preassembled transcription sites.

1,058 citations


Journal ArticleDOI
TL;DR: Functional diversification of the surviving duplicated genes is a major feature of the long-term evolution of polyploidy, and the rate of protein sequence evolution has been significantly asymmetric in >20% of duplicate pairs.
Abstract: To study the evolutionary effects of polyploidy on plant gene functions, we analyzed functional genomics data for a large number of duplicated gene pairs formed by ancient polyploidy events in Arabidopsis thaliana. Genes retained in duplicate are not distributed evenly among Gene Ontology or Munich Information Center for Protein Sequences functional categories, which indicates a nonrandom process of gene loss. Genes involved in signal transduction and transcription have been preferentially retained, and those involved in DNA repair have been preferentially lost. Although the two members of each gene pair must originally have had identical transcription profiles, less than half of the pairs formed by the most recent polyploidy event still retain significantly correlated profiles. We identified several cases where groups of duplicated gene pairs have diverged in concert, forming two parallel networks, each containing one member of each gene pair. In these cases, the expression of each gene is strongly correlated with the other nonhomologous genes in its network but poorly correlated with its paralog in the other network. We also find that the rate of protein sequence evolution has been significantly asymmetric in >20% of duplicate pairs. Together, these results suggest that functional diversification of the surviving duplicated genes is a major feature of the long-term evolution of polyploids.

1,048 citations


Journal ArticleDOI
TL;DR: It was demonstrated that Arabidopsis Dicer homologue Dicer-like 1 (DCL1) catalyzes at least the first and second cleavage steps and that double-stranded RNA-binding domains of DCL1 are involved in positioning of the cleavage sites, direct evidence that DCL 1 is involved in processing of pri- and pre-miRNA.
Abstract: Micro-RNAs (miRNAs) are small, noncoding RNAs of 18-25 nt in length that negatively regulate their complementary mRNAs at the posttranscriptional level. Previous work has shown that some RNase III-like enzymes such as Drosha and Dicer are known to be involved in miRNA biogenesis in animals. However, the mechanism of plant miRNA biogenesis still remains poorly understood. In this article, the process of Arabidopsis miR163 biogenesis was examined. The results revealed that two types of miR163 primary transcripts (pri-miR163s) are transcribed from a single gene by RNA polymerase II and that miR163 biogenesis requires at least three cleavage steps by RNase III-like enzymes at 21-nt-long intervals. The first step is from pri-miR163 to long miR163 precursor (premiR163), the second step is from long pre-miR163 to short premiR163, and the last step is from short pre-miR163 to mature miR163 and the remnant. It is interesting that, during the process, four small RNAs including miR163 are released. By using dcl1 mutants, it was demonstrated that Arabidopsis Dicer homologue Dicer-like 1 (DCL1) catalyzes at least the first and second cleavage steps and that double-stranded RNA-binding domains of DCL1 are involved in positioning of the cleavage sites. Our result is direct evidence that DCL1 is involved in processing of pri- and pre-miRNA.

954 citations


Journal ArticleDOI
TL;DR: A cascade of gene activation from maternal RNA/protein sets to zygotic genome activation and thence to MGA gene sets is proposed, which is a first step toward analysis of the complex gene regulatory networks.

Journal ArticleDOI
TL;DR: The many factors that regulate the elongation stage of transcription are discussed, including the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates.
Abstract: Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.

Journal ArticleDOI
06 May 2004-Nature
TL;DR: COP1 is a critical negative regulator of p53 and represents a new pathway for maintaining p53 at low levels in unstressed cells and is identified as a p53-inducible gene.
Abstract: COP1 (constitutively photomorphogenic 1) is a RING-finger-containing protein that functions to repress plant photomorphogenesis, the light-mediated programme of plant development. Mutants of COP1 are constitutively photomorphogenic, and this has been attributed to their inability to negatively regulate the proteins LAF1 (ref. 1) and HY5 (ref. 2). The role of COP1 in mammalian cells is less well characterized. Here we identify the tumour-suppressor protein p53 as a COP1-interacting protein. COP1 increases p53 turnover by targeting it for degradation by the proteasome in a ubiquitin-dependent fashion, independently of MDM2 or Pirh2, which are known to interact with and negatively regulate p53. Moreover, COP1 serves as an E3 ubiquitin ligase for p53 in vitro and in vivo, and inhibits p53-dependent transcription and apoptosis. Depletion of COP1 by short interfering RNA (siRNA) stabilizes p53 and arrests cells in the G1 phase of the cell cycle. Furthermore, we identify COP1 as a p53-inducible gene, and show that the depletion of COP1 and MDM2 by siRNA cooperatively sensitizes U2-OS cells to ionizing-radiation-induced cell death. Overall, these results indicate that COP1 is a critical negative regulator of p53 and represents a new pathway for maintaining p53 at low levels in unstressed cells.

Journal ArticleDOI
17 Dec 2004-Science
TL;DR: In mammalian cells, p53, Foxo3a, and SIRT1, three proteins separately implicated in aging, constitute a nutrient-sensing pathway.
Abstract: Nutrient availability regulates life-span in a wide range of organisms We demonstrate that in mammalian cells, acute nutrient withdrawal simultaneously augments expression of the SIRT1 deacetylase and activates the Forkhead transcription factor Foxo3a Knockdown of Foxo3a expression inhibited the starvation-induced increase in SIRT1 expression Stimulation of SIRT1 transcription by Foxo3a was mediated through two p53 binding sites present in the SIRT1 promoter, and a nutrient-sensitive physical interaction was observed between Foxo3a and p53 SIRT1 expression was not induced in starved p53-deficient mice Thus, in mammalian cells, p53, Foxo3a, and SIRT1, three proteins separately implicated in aging, constitute a nutrient-sensing pathway

Journal ArticleDOI
02 Dec 2004-Nature
TL;DR: It is reported that BCL6 suppresses the expression of the p53 (also known as tp53) tumour suppressor gene and modulates DNA damage-induced apoptotic responses in germinal-centre B cells and implies that deregulated BCL 6 expression contributes to lymphomagenesis in part by functional inactivation of p53.
Abstract: The human proto-oncogene BCL6 encodes a BTB/POZ-zinc-finger transcriptional repressor that is necessary for germinal-centre formation and is implicated in the pathogenesis of B-cell lymphoma. The precise function of BCL6 in germinal-centre development and lymphomagenesis is unclear because very few direct BCL6 target genes have been identified. Here we report that BCL6 suppresses the expression of the p53 (also known as tp53) tumour suppressor gene and modulates DNA damage-induced apoptotic responses in germinal-centre B cells. BCL6 represses p53 transcription by binding two specific DNA sites within the p53 promoter region and, accordingly, p53 expression is absent in germinal-centre B cells where BCL6 is highly expressed. Suppression of BCL6 expression via specific short interfering RNA leads to increased levels of p53 messenger RNA and protein both under basal conditions and in response to DNA damage. Most notably, constitutive expression of BCL6 protects B cell lines from apoptosis induced by DNA damage. These results suggest that an important function of BCL6 is to allow germinal-centre B cells to tolerate the physiological DNA breaks required for immunoglobulin class switch recombination and somatic hypermutation without inducing a p53-dependent apoptotic response. These findings also imply that deregulated BCL6 expression contributes to lymphomagenesis in part by functional inactivation of p53.

Journal ArticleDOI
TL;DR: A post-transcriptional regulation system in Escherichia coli that uses RNA to both silence and activate gene expression is presented, inserting a complementary cis sequence directly upstream of the ribosome binding site in a target gene.
Abstract: Recent studies have demonstrated the important enzymatic, structural and regulatory roles of RNA in the cell. Here we present a post-transcriptional regulation system in Escherichia coli that uses RNA to both silence and activate gene expression. We inserted a complementary cis sequence directly upstream of the ribosome binding site in a target gene. Upon transcription, this cis-repressive sequence causes a stem-loop structure to form at the 5'-untranslated region of the mRNA. The stem-loop structure interferes with ribosome binding, silencing gene expression. A small noncoding RNA that is expressed in trans targets the cis-repressed RNA with high specificity, causing an alteration in the stem-loop structure that activates expression. Such engineered riboregulators may lend insight into mechanistic actions of endogenous RNA-based processes and could serve as scalable components of biological networks, able to function with any promoter or gene to directly control gene expression.

Journal ArticleDOI
TL;DR: Evidence is provided for the sequential binding of PcG proteins at a Polycomb response element (PRE) in proliferating cells in which the sequence-specific DNA binding Pho and Phol proteins directly recruit E(z)-containing complexes, which in turn methylate histone H3 at lysine 27 (H3mK27).

Journal ArticleDOI
TL;DR: Results suggest that AZF2 and STZ function as transcriptional repressors to increase stress tolerance following growth retardation and Transgenic Arabidopsis overexpressing STZ showed growth retardations and tolerance to drought stress.
Abstract: ZPT2-related proteins that have two canonical Cys-2/His-2-type zinc-finger motifs in their molecules are members of a family of plant transcription factors. To characterize the role of this type of protein, we analyzed the function of Arabidopsis L. Heynh. genes encoding four different ZPT2-related proteins (AZF1, AZF2, AZF3, and STZ). Gel-shift analysis showed that the AZFs and STZ bind to A(G/C)T repeats within an EP2 sequence, known as a target sequence of some petunia (Petunia hybrida) ZPT2 proteins. Transient expression analysis using synthetic green fluorescent protein fusion genes indicated that the AZFs and STZ are preferentially localized to the nucleus. These four ZPT2-related proteins were shown to act as transcriptional repressors that down-regulate the transactivation activity of other transcription factors. RNA gel-blot analysis showed that expression of AZF2 and STZ was strongly induced by dehydration, high-salt and cold stresses, and abscisic acid treatment. Histochemical analysis of β-glucuronidase activities driven by the AZF2 or STZ promoters revealed that both genes are induced in leaves rather than roots of rosette plants by the stresses. Transgenic Arabidopsis overexpressing STZ showed growth retardation and tolerance to drought stress. These results suggest that AZF2 and STZ function as transcriptional repressors to increase stress tolerance following growth retardation.

Journal ArticleDOI
TL;DR: In this paper, a dual role in human physiology: a) it functions as a source of energy and structural components for cells; b) it function as a regulator of gene expression that impacts lipid, car...
Abstract: Dietary fat has a dual role in human physiology: a) it functions as a source of energy and structural components for cells; b) it functions as a regulator of gene expression that impacts lipid, car...

Journal ArticleDOI
TL;DR: The argument for a re-evaluation of the total number of human genes and an alternative term for "gene" to encompass these growing, novel classes of RNA transcripts in the human genome is strongly supported.
Abstract: In this report, we have achieved a richer view of the transcriptome for Chromosomes 21 and 22 by using high-density oligonucleotide arrays on cytosolic poly(A)(+) RNA. Conservatively, only 31.4% of the observed transcribed nucleotides correspond to well-annotated genes, whereas an additional 4.8% and 14.7% correspond to mRNAs and ESTs, respectively. Approximately 85% of the known exons were detected, and up to 21% of known genes have only a single isoform based on exon-skipping alternative expression. Overall, the expression of the well-characterized exons falls predominately into two categories, uniquely or ubiquitously expressed with an identifiable proportion of antisense transcripts. The remaining observed transcription (49.0%) was outside of any known annotation. These novel transcripts appear to be more cell-line-specific and have lower and less variation in expression than the well-characterized genes. Novel transcripts were further characterized based on their distance to annotations, transcript size, coding capacity, and identification as antisense to intronic sequences. By RT-PCR, 126 novel transcripts were independently verified, resulting in a 65% verification rate. These observations strongly support the argument for a re-evaluation of the total number of human genes and an alternative term for "gene" to encompass these growing, novel classes of RNA transcripts in the human genome.

01 Jan 2004
TL;DR: It is demonstrated that acetylation functions in a second pathway of negative control for FOXO factors and provides a novel mechanism whereby hSir2SIRT1 can promote cellular survival and increase lifespan.
Abstract: FOXO transcription factors have important roles in metabolism, cellular proliferation, stress tolerance, and aging. FOXOs are negatively regulated by protein kinase B/c-Akt-mediated phosphorylation. Here we show that FOXO factors are also subject to regulation by reversible acetylation. We provide evidence that the acetyltransferase CREB-binding protein (CBP) binds FOXO resulting in acetylation of FOXO. This acetylation inhibits FOXO transcriptional activity. Binding of CBP and acetylation are induced after treatment of cells with peroxide stress. Deacetylation of FOXOs involves binding of the NAD-dependent deacetylase hSir2 SIRT1 . Accordingly, hSir2 SIRT1 -mediated deacetylation precludes FOXO inhibition through acetylation and thereby prolongs FOXO-dependent transcription of stress-regulating genes. These data demonstrate that acetylation functions in a second pathway of negative control for FOXO factors and provides a novel mechanism whereby hSir2 SIRT1 can promote cellu

Journal ArticleDOI
06 Aug 2004-Cell
TL;DR: It is shown here that DksA, a protein previously unsuspected as a transcription factor, is absolutely required for rRNA regulation, and how transcription factors that do not bind DNA can nevertheless potentiate RNAP for regulation is illustrated.

Journal ArticleDOI
TL;DR: This work has identified a previously unknown temporal expression program and expression hierarchy that matches the enzyme order in unbranched pathways of Escherichia coli and suggests that metabolic regulation networks are designed to generate precision promoter timing and activity programs that can be understood using the engineering principles of production pipelines.
Abstract: A primary goal of systems biology is to understand the design principles of the transcription networks that govern the timing of gene expression. Here we measured promoter activity for approximately 100 genes in parallel from living cells at a resolution of minutes and accuracy of 10%, based on GFP and Lux reporter libraries. Focusing on the amino-acid biosynthesis systems of Escherichia coli, we identified a previously unknown temporal expression program and expression hierarchy that matches the enzyme order in unbranched pathways. We identified two design principles: the closer the enzyme is to the beginning of the pathway, the shorter the response time of the activation of its promoter and the higher its maximal promoter activity. Mathematical analysis suggests that this 'just-in-time' (ref. 5) transcription program is optimal under constraints of rapidly reaching a production goal with minimal total enzyme production. Our findings suggest that metabolic regulation networks are designed to generate precision promoter timing and activity programs that can be understood using the engineering principles of production pipelines.

Journal ArticleDOI
TL;DR: It is shown that the mammalian target of rapamycin regulates Pol I transcription by modulating the activity of TIF-IA, a regulatory factor that senses nutrient and growth-factor availability and elucidate the molecular mechanism underlying mTOR-dependent regulation of RNA synthesis.
Abstract: In cycling cells, transcription of ribosomal RNA genes by RNA polymerase I (Pol I) is tightly coordinated with cell growth. Here, we show that the mammalian target of rapamycin (mTOR) regulates Pol I transcription by modulating the activity of TIF-IA, a regulatory factor that senses nutrient and growth-factor availability. Inhibition of mTOR signaling by rapamycin inactivates TIF-IA and impairs transcription-initiation complex formation. Moreover, rapamycin treatment leads to translocation of TIF-IA into the cytoplasm. Rapamycin-mediated inactivation of TIF-IA is caused by hypophosphorylation of Ser 44 (S44) and hyperphosphorylation of Ser 199 (S199). Phosphorylation at these sites affects TIF-IA activity in opposite ways, for example, phosphorylation of S44 activates and S199 inactivates TIF-IA. The results identify a new target for mTOR-signaling pathways and elucidate the molecular mechanism underlying mTOR-dependent regulation of rRNA synthesis.

Journal ArticleDOI
20 May 2004-Nature
TL;DR: It is shown that inserting L1 sequences on a transcript significantly decreases RNA expression and therefore protein expression, andBioinformatic data are consistent with the hypothesis that L1 can serve as an evolutionary fine-tuner of the human transcriptome.
Abstract: LINE-1 (L1) elements are the most abundant autonomous retrotransposons in the human genome, accounting for about 17% of human DNA. The L1 retrotransposon encodes two proteins, open reading frame (ORF)1 and the ORF2 endonuclease/reverse transcriptase. L1 RNA and ORF2 protein are difficult to detect in mammalian cells, even in the context of overexpression systems. Here we show that inserting L1 sequences on a transcript significantly decreases RNA expression and therefore protein expression. This decreased RNA concentration does not result from major effects on the transcription initiation rate or RNA stability. Rather, the poor L1 expression is primarily due to inadequate transcriptional elongation. Because L1 is an abundant and broadly distributed mobile element, the inhibition of transcriptional elongation by L1 might profoundly affect expression of endogenous human genes. We propose a model in which L1 affects gene expression genome-wide by acting as a 'molecular rheostat' of target genes. Bioinformatic data are consistent with the hypothesis that L1 can serve as an evolutionary fine-tuner of the human transcriptome.

Journal ArticleDOI
25 Jun 2004-Cell
TL;DR: It is shown that the cell size regulator Whi5 inhibits G1/S transcription and that this inhibition is relieved by CDK-mediated phosphorylation, which harmonize G 1/S control in eukaryotes.

Journal ArticleDOI
TL;DR: It is proposed that dense intragenic DNA methylation in mammalian cells initiates formation of a chromatin structure that reduces the efficiency of Pol II elongation.
Abstract: Transcriptional silencing in mammals is often associated with promoter methylation. However, a considerable number of genomic methylated CpGs exist in transposable elements, which are frequently found in intronic regions. To determine whether intragenic methylation influences transcription efficiency, we used the Cre/loxP-based system, RMCE, to introduce a transgene, methylated exclusively in a region downstream of the promoter, into a specific genomic site. This methylation pattern was maintained in vivo, and yielded a clear decrease in transgene expression relative to an unmethylated control. Notably, RNA polymerase II (Pol II) was depleted exclusively in the methylated region, as was histone H3 di- and trimethylated on Lys4 and acetylated on Lys9 and Lys14. As the methylated region adopts a closed chromatin structure in vivo, we propose that dense intragenic DNA methylation in mammalian cells initiates formation of a chromatin structure that reduces the efficiency of Pol II elongation.

Journal ArticleDOI
TL;DR: It is shown by NMR that two sequences containing these two sets of G-stretches form intramolecular propeller-type parallel-stranded G-quadruplexes in K(+)-containing solution.
Abstract: The nuclease-hypersensitivity element III1 in the c-myc promoter is a good anticancer target since it largely controls transcriptional activation of the important c-myc oncogene. Recently, the guanine-rich strand of this element has been shown to form an equilibrium between G-quadruplex structures built from two different sets of G-stretches; two models of intramolecular fold-back antiparallel-stranded G-quadruplexes, called “basket” and “chair” forms, were proposed. Here, we show by NMR that two sequences containing these two sets of G-stretches form intramolecular propeller-type parallel-stranded G-quadruplexes in K+-containing solution. The two structures involve a core of three stacked G-tetrads formed by four parallel G-stretches with all anti guanines and three double-chain-reversal loops bridging three G-tetrad layers. The central loop contains two or six residues, while the two other loops contain only one residue.

Journal ArticleDOI
TL;DR: A combined in silico and biochemical approach is used to identify binding sites and potential target genes of RE1 silencing transcription factor/neuron-restrictive silencer element (RE1/NRSE) within the human, mouse, and Fugu rubripes genomes and provides a unique whole-genome map for a given transcription factor-binding site implicated in establishing specific patterns of neuronal gene expression.
Abstract: The completion of whole genome sequencing projects has provided the genetic instructions of life. However, whereas the identification of gene coding regions has progressed, the mapping of transcriptional regulatory motifs has moved more slowly. To understand how distinct expression profiles can be established and maintained, a greater understanding of these sequences and their trans-acting factors is required. Herein we have used a combined in silico and biochemical approach to identify binding sites [repressor element 1/neuron-restrictive silencer element (RE1/NRSE)] and potential target genes of RE1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) within the human, mouse, and Fugu rubripes genomes. We have used this genome-wide analysis to identify 1,892 human, 1,894 mouse, and 554 Fugu RE1/NRSEs and present their location and gene linkages in a searchable database. Furthermore, we identified an in vivo hierarchy in which distinct subsets of RE1/NRSEs interact with endogenous levels of REST/NRSF, whereas others function as bona fide transcriptional control elements only in the presence of elevated levels of REST/NRSF. These data show that individual RE1/NRSE sites interact differentially with REST/NRSF within a particular cell type. This combined bioinformatic and biochemical approach serves to illustrate the selective manner in which a transcription factor interacts with its potential binding sites and regulates target genes. In addition, this approach provides a unique whole-genome map for a given transcription factor-binding site implicated in establishing specific patterns of neuronal gene expression.

Journal ArticleDOI
25 Nov 2004-Nature
TL;DR: CoTC acts as a precursor to termination by presenting a free RNA 5′ end that is recognized by the human 5′ → 3′ exonuclease Xrn2, which results in transcriptional termination, as envisaged in the torpedo model.
Abstract: Eukaryotic protein-encoding genes possess poly(A) signals that define the end of the messenger RNA and mediate downstream transcriptional termination by RNA polymerase II (Pol II)1. Termination could occur through an ‘anti-termination’ mechanism whereby elongation factors dissociate when the poly(A) signal is encountered, producing termination-competent Pol II2,3. An alternative ‘torpedo’ model postulated that poly(A) site cleavage provides an unprotected RNA 5′ end that is degraded by 5′ → 3′ exonuclease activities (torpedoes) and so induces dissociation of Pol II from the DNA template1,4. This model has been questioned because unprocessed transcripts read all the way to the site of transcriptional termination before upstream polyadenylation5,6,7. However, nascent transcripts located 1 kilobase downstream of the human β-globin gene poly(A) signal are associated with a co-transcriptional cleavage (CoTC) activity8 that acts with the poly(A) signal to elicit efficient transcriptional termination. The CoTC sequence is an autocatalytic RNA structure that undergoes rapid self-cleavage9. Here we show that CoTC acts as a precursor to termination by presenting a free RNA 5′ end that is recognized by the human 5′ → 3′ exonuclease Xrn2. Degradation of the downstream cleavage product by Xrn2 results in transcriptional termination, as envisaged in the torpedo model.