scispace - formally typeset
Search or ask a question

Showing papers on "Ubiquitin ligase published in 2012"


Journal ArticleDOI
TL;DR: The structure, assembly, and function of the posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells.
Abstract: The posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells. Ubiquitin can be attached to substrate proteins as a single moiety or in the form of polymeric chains in which successive ubiquitin molecules are connected through specific isopeptide bonds. Reminiscent of a code, the various ubiquitin modifications adopt distinct conformations and lead to different outcomes in cells. Here, we discuss the structure, assembly, and function of this ubiquitin code.

2,762 citations


Journal ArticleDOI
10 May 2012-Nature
TL;DR: It is shown that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling, and R-spondin mimics ZNRF3 inhibition by increasing the membrane level of WNT receptors.
Abstract: R-spondin proteins strongly potentiate Wnt signalling and function as stem-cell growth factors. Despite the biological and therapeutic significance, the molecular mechanism of R-spondin action remains unclear. Here we show that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling. ZNRF3 is associated with the Wnt receptor complex, and inhibits Wnt signalling by promoting the turnover of frizzled and LRP6. Inhibition of ZNRF3 enhances Wnt/β-catenin signalling and disrupts Wnt/planar cell polarity signalling in vivo. Notably, R-spondin mimics ZNRF3 inhibition by increasing the membrane level of Wnt receptors. Mechanistically, R-spondin interacts with the extracellular domain of ZNRF3 and induces the association between ZNRF3 and LGR4, which results in membrane clearance of ZNRF3. These data suggest that R-spondin enhances Wnt signalling by inhibiting ZNRF3. Our study provides new mechanistic insights into the regulation of Wnt receptor turnover, and reveals ZNRF3 as a tractable target for therapeutic exploration.

762 citations


Journal ArticleDOI
TL;DR: These results provide the first evidence that PINK1 is activated following Δψm depolarization and suggest that Pink1 directly phosphorylates and activates Parkin, and indicate that monitoring phosphorylation of Parkin at Ser65 and/or Pinks1 at Thr257 represent the first biomarkers for examining activity of the PINK 1-Parkin signalling pathway in vivo.
Abstract: Missense mutations in PTEN-induced kinase 1 (PINK1) cause autosomal-recessive inherited Parkinson's disease (PD). We have exploited our recent discovery that recombinant insect PINK1 is catalytically active to test whether PINK1 directly phosphorylates 15 proteins encoded by PD-associated genes as well as proteins reported to bind PINK1. We have discovered that insect PINK1 efficiently phosphorylates only one of these proteins, namely the E3 ligase Parkin. We have mapped the phosphorylation site to a highly conserved residue within the Ubl domain of Parkin at Ser65. We show that human PINK1 is specifically activated by mitochondrial membrane potential (Δψm) depolarization, enabling it to phosphorylate Parkin at Ser65. We further show that phosphorylation of Parkin at Ser65 leads to marked activation of its E3 ligase activity that is prevented by mutation of Ser65 or inactivation of PINK1. We provide evidence that once activated, PINK1 autophosphorylates at several residues, including Thr257, which is accompanied by an electrophoretic mobility band-shift. These results provide the first evidence that PINK1 is activated following Δψm depolarization and suggest that PINK1 directly phosphorylates and activates Parkin. Our findings indicate that monitoring phosphorylation of Parkin at Ser65 and/or PINK1 at Thr257 represent the first biomarkers for examining activity of the PINK1-Parkin signalling pathway in vivo. Our findings also suggest that small molecule activators of Parkin that mimic the effect of PINK1 phosphorylation may confer therapeutic benefit for PD.

753 citations


Journal ArticleDOI
TL;DR: These findings extend the functional relevance of p97 to lysosomal degradation and reveal a surprising dual role in protecting cells from protein stress and ensuring genome stability during proliferation.
Abstract: The ATP-driven chaperone valosin-containing protein (VCP)/p97 governs critical steps in ubiquitin-dependent protein quality control and intracellular signalling pathways. It cooperates with diverse partner proteins to help process ubiquitin-labelled proteins for recycling or degradation by the proteasome in many cellular contexts. Recent studies have uncovered unexpected cellular functions for p97 in autophagy, endosomal sorting and regulating protein degradation at the outer mitochondrial membrane, and elucidated a role for p97 in key chromatin-associated processes. These findings extend the functional relevance of p97 to lysosomal degradation and reveal a surprising dual role in protecting cells from protein stress and ensuring genome stability during proliferation.

699 citations


Journal ArticleDOI
TL;DR: The combinatorial use of diverse ubiquitin-binding domains (UBDs) in full-length proteins, selective recognition of chains with distinct linkages and length, and posttranslational modifications of Ubiquitin receptors or multivalent interactions within protein complexes illustrate a few mechanisms by which a circuitry of signaling networks can be rewired by ubiquitIn-binding proteins to control cellular functions in vivo.
Abstract: Ubiquitin acts as a versatile cellular signal that controls a wide range of biological processes including protein degradation, DNA repair, endocytosis, autophagy, transcription, immunity, and inflammation. The specificity of ubiquitin signaling is achieved by alternative conjugation signals (monoubiquitin and ubiquitin chains) and interactions with ubiquitin-binding proteins (known as ubiquitin receptors) that decode ubiquitinated target signals into biochemical cascades in the cell. Herein, we review the current knowledge pertaining to the structural and functional features of ubiquitin-binding proteins and the mechanisms by which they recognize various types of ubiquitin topologies. The combinatorial use of diverse ubiquitin-binding domains (UBDs) in full-length proteins, selective recognition of chains with distinct linkages and length, and posttranslational modifications of ubiquitin receptors or multivalent interactions within protein complexes illustrate a few mechanisms by which a circuitry of signaling networks can be rewired by ubiquitin-binding proteins to control cellular functions in vivo.

651 citations


Journal ArticleDOI
TL;DR: The historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF‐κB pathway are discussed.
Abstract: The noncanonical nuclear factor-κB (NF-κB) signaling pathway mediates activation of the p52/RelB NF-κB complex and, thereby, regulates specific immunological processes. This NF-κB pathway relies on the inducible processing of NF-κB2 precursor protein, p100, as opposed to the degradation of IκBα in the canonical NF-κB pathway. A central signaling component of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which functions together with a downstream kinase, IKKα (inhibitor of NF-κB kinase α), to induce phosphorylation-dependent ubiquitination and processing of p100. Under normal conditions, NIK is targeted for continuous degradation by a tumor necrosis factor (TNF) receptor-associated factor-3 (TRAF3)-dependent E3 ubiquitin ligase. In response to signals mediated by a subset of TNF receptor superfamily members, NIK becomes stabilized as a result of TRAF3 degradation, leading to the activation of noncanonical NF-κB. This review discusses both the historical perspectives and the recent progress in the regulation and biological function of the noncanonical NF-κB pathway.

589 citations


Journal ArticleDOI
TL;DR: The importance of Lys11 linkages and Met1 linkages in cell cycle regulation and nuclear factor-κB activation, respectively, highlight that the different ubiquitin chain types should be considered as functionally independent PTMs.
Abstract: Ubiquitylation is one of the most abundant and versatile post-translational modifications (PTMs) in cells. Its versatility arises from the ability of ubiquitin to form eight structurally and functionally distinct polymers, in which ubiquitin moieties are linked via one of seven Lys residues or the amino terminus. Whereas the roles of Lys48- and Lys63-linked polyubiquitin in protein degradation and cellular signalling are well characterized, the functions of the remaining six 'atypical' ubiquitin chain types (linked via Lys6, Lys11, Lys27, Lys29, Lys33 and Met1) are less well defined. Recent developments provide insights into the mechanisms of ubiquitin chain assembly, recognition and hydrolysis and allow detailed analysis of the functions of atypical ubiquitin chains. The importance of Lys11 linkages and Met1 linkages in cell cycle regulation and nuclear factor-κB activation, respectively, highlight that the different ubiquitin chain types should be considered as functionally independent PTMs.

581 citations


Journal ArticleDOI
TL;DR: The post-translational attachment of ubiquitin, a highly conserved 76-amino-acid polypeptide, directs myriad eukaryotic proteins to a variety of fates and functions.
Abstract: The post-translational attachment of ubiquitin, a highly conserved 76-amino-acid polypeptide, directs myriad eukaryotic proteins to a variety of fates and functions. Ubiquitylation is best-known for targeting proteins for degradation by the 26S proteasome. Other functions include internalization and

569 citations


Journal ArticleDOI
TL;DR: A new role for MPP is highlighted in PINK1 import and mitochondrial quality control via the Pinks1–Parkin pathway, finding that Pink1 turnover is particularly sensitive to even modest reductions in MPP levels.
Abstract: Mutations in phosphatase and tensin homologue-induced kinase 1 (PINK1) cause recessively inherited Parkinson's disease (PD), a neurodegenerative disorder linked to mitochondrial dysfunction. In healthy mitochondria, PINK1 is rapidly degraded in a process involving both mitochondrial proteases and the proteasome. However, when mitochondrial import is compromised by depolarization, PINK1 accumulates on the mitochondrial surface where it recruits the PD-linked E3 ubiquitin ligase Parkin from the cytosol, which in turn mediates the autophagic destruction of the dysfunctional organelles. Using an unbiased RNA-mediated interference (RNAi)-based screen, we identified four mitochondrial proteases, mitochondrial processing peptidase (MPP), presenilin-associated rhomboid-like protease (PARL), m-AAA and ClpXP, involved in PINK1 degradation. We find that PINK1 turnover is particularly sensitive to even modest reductions in MPP levels. Moreover, PINK1 cleavage by MPP is coupled to import such that reducing MPP activity induces PINK1 accumulation at the mitochondrial surface, leading to Parkin recruitment and mitophagy. These results highlight a new role for MPP in PINK1 import and mitochondrial quality control via the PINK1–Parkin pathway.

564 citations


Journal ArticleDOI
14 Sep 2012-Cell
TL;DR: It is shown that R NF8 is inactive toward nucleosomal H2A, whereas RNF168 catalyzes the monoubiquitination of the histones specifically on K13-15, which suggests that RNF8 initiates H2 a/H2AX ubiquitination with K63-linked ubiquitin chains and R NF168 extends them.

541 citations


Journal ArticleDOI
TL;DR: Current understanding on COP1 and DET1 is reviewed, with a focus on their role as part of two distinct, multimeric CUL4-based E3 ligases.

Journal ArticleDOI
TL;DR: It is proposed that the association of Pink1 with the TOM complex allows rapid reimport of PINK1 to rescue repolarized mitochondria from mitophagy, and discount mitochondrial-specific factors for Parkin translocation and activation.

Journal ArticleDOI
21 Nov 2012-Cell
TL;DR: The range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism is revealed and the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation.

Journal ArticleDOI
TL;DR: This study reports that Ser65 in the ubiquitin-like domain (Ubl) of Parkin is phosphorylated in a PINK1-dependent manner upon depolarisation of ΔΨm.
Abstract: Parkinson's disease genes PINK1 and parkin encode kinase and ubiquitin ligase, respectively. The gene products PINK1 and Parkin are implicated in mitochondrial autophagy, or mitophagy. Upon the loss of mitochondrial membrane potential (ΔΨm), cytosolic Parkin is recruited to the mitochondria by PINK1 through an uncharacterised mechanism – an initial step triggering sequential events in mitophagy. This study reports that Ser65 in the ubiquitin-like domain (Ubl) of Parkin is phosphorylated in a PINK1-dependent manner upon depolarisation of ΔΨm. The introduction of mutations at Ser65 suggests that phosphorylation of Ser65 is required not only for the efficient translocation of Parkin, but also for the degradation of mitochondrial proteins in mitophagy. Phosphorylation analysis of Parkin pathogenic mutants also suggests Ser65 phosphorylation is not sufficient for Parkin translocation. Our study partly uncovers the molecular mechanism underlying the PINK1-dependent mitochondrial translocation and activation of Parkin as an initial step of mitophagy.

Journal ArticleDOI
TL;DR: Recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways are discussed, including the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway.
Abstract: Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

Journal ArticleDOI
Eunice Y. Yuen1, Jing Wei1, Wenhua Liu1, Ping Zhong1, Xiangning Li1, Zhen Yan1 
08 Mar 2012-Neuron
TL;DR: It is suggested that repeated stress dampens PFC glutamatergic transmission by facilitating glutamate receptor turnover, which causes the detrimental effect on PFC-dependent cognitive processes.

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin is reported, primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate.
Abstract: Ubiquitin modification is mediated by a large family of specificity determining ubiquitin E3 ligases. To facilitate ubiquitin transfer, RING E3 ligases bind both substrate and a ubiquitin E2 conjugating enzyme linked to ubiquitin via a thioester bond, but the mechanism of transfer has remained elusive. Here we report the crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin. While the E2 contacts a single protomer of the RING, ubiquitin is folded back onto the E2 by contacts from both RING protomers. The carboxy-terminal tail of ubiquitin is locked into an active site groove on the E2 by an intricate network of interactions, resulting in changes at the E2 active site. This arrangement is primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate.

Journal ArticleDOI
TL;DR: The results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.
Abstract: Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.

Journal ArticleDOI
01 Oct 2012-Genetics
TL;DR: The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins.
Abstract: Protein modifications provide cells with exquisite temporal and spatial control of protein function. Ubiquitin is among the most important modifiers, serving both to target hundreds of proteins for rapid degradation by the proteasome, and as a dynamic signaling agent that regulates the function of covalently bound proteins. The diverse effects of ubiquitylation reflect the assembly of structurally distinct ubiquitin chains on target proteins. The resulting ubiquitin code is interpreted by an extensive family of ubiquitin receptors. Here we review the components of this regulatory network and its effects throughout the cell.

Journal ArticleDOI
TL;DR: It is found that treatment of cells with tert-butylhydroquinone accelerated the Keap1 degradation and this results indicate that Nrf2 accumulation is the dominant cause to provoke the liver damage in the autophagy-deficient mice.
Abstract: The Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) system is essential for cytoprotection against oxidative and electrophilic insults. Under unstressed conditions, Keap1 serves as an adaptor for ubiquitin E3 ligase and promotes proteasomal degradation of Nrf2, but Nrf2 is stabilized when Keap1 is inactivated under oxidative/electrophilic stress conditions. Autophagy-deficient mice show aberrant accumulation of p62, a multifunctional scaffold protein, and develop severe liver damage. The p62 accumulation disrupts the Keap1-Nrf2 association and provokes Nrf2 stabilization and accumulation. However, individual contributions of p62 and Nrf2 to the autophagy-deficiency–driven liver pathogenesis have not been clarified. To examine whether Nrf2 caused the liver injury independent of p62, we crossed liver-specific Atg7::Keap1-Alb double-mutant mice into p62- and Nrf2-null backgrounds. Although Atg7::Keap1-Alb::p62−/− triple-mutant mice displayed defective autophagy accompanied by the robust accumulation of Nrf2 and severe liver injury, Atg7::Keap1-Alb::Nrf2−/− triple-mutant mice did not show any signs of such hepatocellular damage. Importantly, in this study we noticed that Keap1 accumulated in the Atg7- or p62-deficient mouse livers and the Keap1 level did not change by a proteasome inhibitor, indicating that the Keap1 protein is constitutively degraded through the autophagy pathway. This finding is in clear contrast to the Nrf2 degradation through the proteasome pathway. We also found that treatment of cells with tert-butylhydroquinone accelerated the Keap1 degradation. These results thus indicate that Nrf2 accumulation is the dominant cause to provoke the liver damage in the autophagy-deficient mice. The autophagy pathway maintains the integrity of the Keap1-Nrf2 system for the normal liver function by governing the Keap1 turnover.

Journal ArticleDOI
TL;DR: The structural parameters of the interaction of Nrf2 with the GSK-3/β-TrCP axis is established and its functional relevance in the regulation of NRF2 by the signaling pathways that impinge on G SKS-3 is established.
Abstract: The transcription factor NF-E2-related factor 2 (Nrf2) is a master regulator of a genetic program, termed the phase 2 response, that controls redox homeostasis and participates in multiple aspects of physiology and pathology. Nrf2 protein stability is regulated by two E3 ubiquitin ligase adaptors, Keap1 and β-TrCP, the latter of which was only recently reported. Here, two-dimensional (2D) gel electrophoresis and site-directed mutagenesis allowed us to identify two serines of Nrf2 that are phosphorylated by glycogen synthase kinase 3β (GSK-3β) in the sequence DSGISL. Nuclear magnetic resonance studies defined key residues of this phosphosequence involved in docking to the WD40 propeller of β-TrCP, through electrostatic and hydrophobic interactions. We also identified three arginine residues of β-TrCP that participate in Nrf2 docking. Intraperitoneal injection of the GSK-3 inhibitor SB216763 led to increased Nrf2 and heme oxygenase-1 levels in liver and hippocampus. Moreover, mice with hippocampal absence of GSK-3β exhibited increased levels of Nrf2 and phase 2 gene products, reduced glutathione, and decreased levels of carbonylated proteins and malondialdehyde. This study establishes the structural parameters of the interaction of Nrf2 with the GSK-3/β-TrCP axis and its functional relevance in the regulation of Nrf2 by the signaling pathways that impinge on GSK-3.

Journal ArticleDOI
TL;DR: Accumulating evidence strongly supports a central role of K63 polyubiquitination in IKK activation by multiple immune and inflammatory pathways.
Abstract: A role for polyubiquitination in the activation of inhibitor of NF-κB (IκB) kinase (IKK) through a proteasome-independent mechanism was first reported in 1996, but the physiological significance of this finding was not clear until 2000 when TRAF6 was found to be a ubiquitin E3 ligase that catalyzes lysine-63 (K63) polyubiquitination. Since then, several proteins known to regulate IKK have been linked to the ubiquitin pathway. These include the deubiquitination enzymes CYLD and A20 that inhibit IKK, and the ubiquitin binding proteins NEMO and TAB2 which are the regulatory subunits of IKK and TAK1 kinase complexes, respectively. Now accumulating evidence strongly supports a central role of K63 polyubiquitination in IKK activation by multiple immune and inflammatory pathways. Interestingly, recent research suggests that some alternative ubiquitin chains such as linear or K11 ubiquitin chains may also play a role in certain pathways such as the TNF pathway. Here I present a historical narrative of the discovery of the role of ubiquitin in IKK activation, review recent advances in understanding the role and mechanism of ubiquitin-mediated IKK activation, and raise some questions to be resolved in future research.

Journal ArticleDOI
TL;DR: This work has generated the first small molecule targeting the von Hippel–Lindau protein, the substrate recognition subunit of an E3 ligase, and an important target in cancer, chronic anemia, and ischemia, and obtained the crystal structure of VHL bound to the most potent inhibitor.
Abstract: E3 ubiquitin ligases, which bind protein targets, leading to their ubiquitination and subsequent degradation, are attractive drug targets due to their exquisite substrate specificity. However, the development of small-molecule inhibitors has proven extraordinarily challenging as modulation of E3 ligase activities requires the targeting of protein–protein interactions. Using rational design, we have generated the first small molecule targeting the von Hippel–Lindau protein (VHL), the substrate recognition subunit of an E3 ligase, and an important target in cancer, chronic anemia, and ischemia. We have also obtained the crystal structure of VHL bound to our most potent inhibitor, confirming that the compound mimics the binding mode of the transcription factor HIF-1α, a substrate of VHL. These results have the potential to guide future development of improved lead compounds as therapeutics for the treatment of chronic anemia and ischemia.



Journal ArticleDOI
TL;DR: E3 ubiquitin ligase tripartite motif protein 32 (TRIM32) ubiquitinated MITA and dramatically enhanced MITA-mediated induction of IFN-β and suggest that TRIM32 is an important regulatory protein for innate immunity against both RNA and DNA viruses.

Journal ArticleDOI
TL;DR: This review summarizes the current understanding of how ubiquitin modification influences cargo trafficking, with a special emphasis on mechanisms of quality control and quality maintenance in the secretory and endocytic pathways.
Abstract: From the moment of cotranslational insertion into the lipid bilayer of the endoplasmic reticulum (ER), newly synthesized integral membrane proteins are subject to a complex series of sorting, trafficking, quality control, and quality maintenance systems. Many of these processes are intimately controlled by ubiquitination, a posttranslational modification that directs trafficking decisions related to both the biosynthetic delivery of proteins to the plasma membrane (PM) via the secretory pathway and the removal of proteins from the PM via the endocytic pathway. Ubiquitin modification of integral membrane proteins (or "cargoes") generally acts as a sorting signal, which is recognized, captured, and delivered to a specific cellular destination via specialized trafficking events. By affecting the quality, quantity, and localization of integral membrane proteins in the cell, defects in these processes contribute to human diseases, including cystic fibrosis, circulatory diseases, and various neuropathies. This review summarizes our current understanding of how ubiquitin modification influences cargo trafficking, with a special emphasis on mechanisms of quality control and quality maintenance in the secretory and endocytic pathways.

Journal ArticleDOI
TL;DR: It is established that RNF4 regulates turnover of the DSB-responsive factors MDC1 and replication protein A at DNA damage sites and that R NF4-depleted cells fail to effectively replace RPA by the homologous recombination factors BRCA2 and RAD51 on resected DNA.
Abstract: Protein ubiquitylation and sumoylation play key roles in regulating cellular responses to DNA double-strand breaks (DSBs). Here, we show that human RNF4, a small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, is recruited to DSBs in a manner requiring its SUMO interaction motifs, the SUMO E3 ligases PIAS1 and PIAS4, and various DSB-responsive proteins. Furthermore, we reveal that RNF4 depletion impairs ubiquitin adduct formation at DSB sites and causes persistent histone H2AX phosphorylation (γH2AX) associated with defective DSB repair, hypersensitivity toward DSB-inducing agents, and delayed recovery from radiation-induced cell cycle arrest. We establish that RNF4 regulates turnover of the DSB-responsive factors MDC1 and replication protein A (RPA) at DNA damage sites and that RNF4-depleted cells fail to effectively replace RPA by the homologous recombination factors BRCA2 and RAD51 on resected DNA. Consistent with previous data showing that RNF4 targets proteins to the proteasome, we show that the proteasome component PSMD4 is recruited to DNA damage sites in a manner requiring its ubiquitin-interacting domains, RNF4 and RNF8. Finally, we establish that PSMD4 binds MDC1 and RPA1 in a DNA damage-induced, RNF4-dependent manner and that PSMD4 depletion cause MDC1 and γH2AX persistence in irradiated cells. RNF4 thus operates as a DSB response factor at the crossroads between the SUMO and ubiquitin systems.

Journal ArticleDOI
TL;DR: Results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.
Abstract: Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

Journal ArticleDOI
TL;DR: It is demonstrated that phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein normally localized in the cytoplasm and nucleus, was secreted in exosomes, and implicate Ndfip1 as a molecular regulator of the exosomal export of PTEN, with consequences for non–cell-autonomous PTEN activity.
Abstract: Exosomes are microvesicles of endosomal origin that are secreted, and their contents (proteins, lipids, DNA, or microRNAs) can alter the physiological states of recipient cells. We demonstrated that phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor protein normally localized in the cytoplasm and nucleus, was secreted in exosomes. Secreted PTEN was internalized by recipient cells with resultant functional activity, which resulted in reduced phosphorylation of the serine and threonine kinase Akt and reduced cellular proliferation. PTEN secretion in exosomes required Ndfip1, an adaptor protein for members of the Nedd4 family of E3 ubiquitin ligases. Without Ndfip1, neither Nedd4-1 nor Nedd4-2 promoted the recruitment of PTEN into exosomes. In addition, lysine 13 within PTEN, which is required for its ubiquitination by Nedd4-1, was required for exosomal transport of PTEN. These results implicate Ndfip1 as a molecular regulator of the exosomal export of PTEN, with consequences for non-cell-autonomous PTEN activity. Thus, we suggest that the ability of PTEN to exert phosphatase activity beyond the cell in which it is produced has implications for PTEN function during development, health, and disease.