scispace - formally typeset
Search or ask a question
Institution

Beihang University

EducationBeijing, China
About: Beihang University is a education organization based out in Beijing, China. It is known for research contribution in the topics: Computer science & Control theory. The organization has 67002 authors who have published 73507 publications receiving 975691 citations. The organization is also known as: Beijing University of Aeronautics and Astronautics.


Papers
More filters
Proceedings ArticleDOI
01 Jul 2017
TL;DR: This paper presents a fully convolutional feature mimic framework to train very efficient CNN based detectors, which do not need ImageNet pre-training and achieve competitive performance as the large and slow models.
Abstract: Current CNN based object detectors need initialization from pre-trained ImageNet classification models, which are usually time-consuming. In this paper, we present a fully convolutional feature mimic framework to train very efficient CNN based detectors, which do not need ImageNet pre-training and achieve competitive performance as the large and slow models. We add supervision from high-level features of the large networks in training to help the small network better learn object representation. More specifically, we conduct a mimic method for the features sampled from the entire feature map and use a transform layer to map features from the small network onto the same dimension of the large network. In training the small network, we optimize the similarity between features sampled from the same region on the feature maps of both networks. Extensive experiments are conducted on pedestrian and common object detection tasks using VGG, Inception and ResNet. On both Caltech and Pascal VOC, we show that the modified 2.5× accelerated Inception network achieves competitive performance as the full Inception Network. Our faster model runs at 80 FPS for a 1000×1500 large input with only a minor degradation of performance on Caltech.

296 citations

Posted Content
TL;DR: This work proposes to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference to reduce the magnitude of bias amplification in multilabel object classification and visual semantic role labeling.
Abstract: Language is increasingly being used to define rich visual recognition problems with supporting image collections sourced from the web. Structured prediction models are used in these tasks to take advantage of correlations between co-occurring labels and visual input but risk inadvertently encoding social biases found in web corpora. In this work, we study data and models associated with multilabel object classification and visual semantic role labeling. We find that (a) datasets for these tasks contain significant gender bias and (b) models trained on these datasets further amplify existing bias. For example, the activity cooking is over 33% more likely to involve females than males in a training set, and a trained model further amplifies the disparity to 68% at test time. We propose to inject corpus-level constraints for calibrating existing structured prediction models and design an algorithm based on Lagrangian relaxation for collective inference. Our method results in almost no performance loss for the underlying recognition task but decreases the magnitude of bias amplification by 47.5% and 40.5% for multilabel classification and visual semantic role labeling, respectively.

296 citations

Journal ArticleDOI
08 Feb 2017-Neuron
TL;DR: A simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin, flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms, with broad potential for optogenetics applications is presented.

295 citations

Journal ArticleDOI
TL;DR: This review summarizes the recent research on and applications of patterning of controllable surface wettability for printing techniques, with a focus on the design and fabrication of the precise surfaceWettability patterning by enhancing the contrast of hydrophilicity and hydrophobicity, such as superhydrophilic and superhydrophic patterning.
Abstract: Patterning of controllable surface wettability has attracted wide scientific attention due to its importance in both fundamental research and practical applications. In particular, it is crucial to form clear image areas and non-image areas in printing techniques based on wetting and dewetting. This review summarizes the recent research on and applications of patterning of controllable surface wettability for printing techniques, with a focus on the design and fabrication of the precise surface wettability patterning by enhancing the contrast of hydrophilicity and hydrophobicity, such as superhydrophilicity and superhydrophobicity. The selected topics mainly include patterned surface wettability for lithographic printing with different plate-making techniques, patterned surface wettability for microcontact printing with a patterned wetting stamp and special wettability mediated patterning microtransfer printing, patterned surface wettability for inkjet printing with controllable surface wettability of the substrate and printing head to ink, and patterned surface wettability by a combination of different printing techniques. A personal perspective on the future development and remaining challenges of this research is also briefly discussed.

294 citations

Journal ArticleDOI
Huizhong An1, Yi Du1, Tianmin Wang1, Cong Wang1, Weichang Hao1, Junying Zhang1 
TL;DR: A series of photocatalysts, bismuth oxyhalide (BiOX, X = Cl, Br, and I), were synthesized by a hydrolysis method as mentioned in this paper.

293 citations


Authors

Showing all 67500 results

NameH-indexPapersCitations
Yi Chen2174342293080
H. S. Chen1792401178529
Alan J. Heeger171913147492
Lei Jiang1702244135205
Wei Li1581855124748
Shu-Hong Yu14479970853
Jian Zhou128300791402
Chao Zhang127311984711
Igor Katkov12597271845
Tao Zhang123277283866
Nicholas A. Kotov12357455210
Shi Xue Dou122202874031
Li Yuan12194867074
Robert O. Ritchie12065954692
Haiyan Wang119167486091
Network Information
Related Institutions (5)
Harbin Institute of Technology
109.2K papers, 1.6M citations

96% related

Tsinghua University
200.5K papers, 4.5M citations

92% related

University of Science and Technology of China
101K papers, 2.4M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

City University of Hong Kong
60.1K papers, 1.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023205
20221,178
20216,768
20206,916
20197,080