scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Redshift. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.
Topics: Galaxy, Redshift, Population, Star formation, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: The confidence limit of the method here termed EMD/HSA (for empirical mode decomposition/Hilbert spectral analysis) is introduced by using various adjustable stopping criteria in the sifting processes of the EMD step to generate a sample set of intrinsic mode functions (IMFs) as mentioned in this paper.
Abstract: The confidence limit is a standard measure of the accuracy of the result in any statistical analysis. Most of the confidence limits are derived as follows. The data are first divided into subsections and then, under the ergodic assumption, the temporal mean is substituted for the ensemble mean. Next, the confidence limit is defined as a range of standard deviations from this mean. However, such a confidence limit is valid only for linear and stationary processes. Furthermore, in order for the ergodic assumption to be valid, the subsections have to be statistically independent. For non‐stationary and nonlinear processes, such an analysis is no longer valid. The confidence limit of the method here termed EMD/HSA (for empirical mode decomposition/Hilbert spectral analysis) is introduced by using various adjustable stopping criteria in the sifting processes of the EMD step to generate a sample set of intrinsic mode functions (IMFs). The EMD technique acts as a pre‐processor for HSA on the original data, producing a set of components (IMFs) from the original data that equal the original data when added back together. Each IMF represents a scale in the data, from smallest to largest. The ensemble mean and standard deviation of the IMF sample sets obtained with different stopping criteria are calculated, and these form a simple random sample set. The confidence limit for EMD/HSA is then defined as a range of standard deviations from the ensemble mean. Without evoking the ergodic assumption, subdivision of the data stream into short sections is unnecessary; hence, the results and the confidence limit retain the full‐frequency resolution of the full dataset. This new confidence limit can be applied to the analysis of nonlinear and non‐stationary processes by these new techniques. Data from length‐of‐day measurements and a particularly violent recent earthquake are used to demonstrate how the confidence limit is obtained and applied. By providing a confidence limit for this new approach, a stable range of stopping criteria for the decomposition or sifting phase (EMD) has been established, making the results of the final processing with HSA, and the entire EMD/HSA method, more definitive.

1,178 citations

Journal ArticleDOI
21 Jun 1991-Science
TL;DR: Application of recombinant DNA methods to restructure metabolic networks can improve production of metabolite and protein products by altering pathway distributions and rates.
Abstract: Application of recombinant DNA methods to restructure metabolic networks can improve production of metabolite and protein products by altering pathway distributions and rates. Recruitment of heterologous proteins enables extension of existing pathways to obtain new chemical products, alter posttranslational protein processing, and degrade recalcitrant wastes. Although some of the experimental and mathematical tools required for rational metabolic engineering are available, complex cellular responses to genetic perturbations can complicate predictive design.

1,173 citations

Journal ArticleDOI
TL;DR: Hydrothermal vents unite microbiology and geology to breathe new life into research into one of biology's most important questions — what is the origin of life?
Abstract: Hydrothermal vent systems, which can support life in the absence of photosynthesis, are today inhabited by animals that form symbioses with lithoautotrophic microorganisms from which they obtain chemical energy. These hydrothermal systems might resemble the earliest microbial ecosystems on the Earth. Here, Martin, Baross, Kelley and Russell review how understanding these complex systems might inform our understanding of the origins of life itself. Submarine hydrothermal vents are geochemically reactive habitats that harbour rich microbial communities. There are striking parallels between the chemistry of the H2–CO2 redox couple that is present in hydrothermal systems and the core energy metabolic reactions of some modern prokaryotic autotrophs. The biochemistry of these autotrophs might, in turn, harbour clues about the kinds of reactions that initiated the chemistry of life. Hydrothermal vents thus unite microbiology and geology to breathe new life into research into one of biology's most important questions — what is the origin of life?

1,172 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy3  +978 moreInstitutions (112)
TL;DR: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers as discussed by the authors.
Abstract: The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9−240Gpc−3yr−1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

1,172 citations

Journal ArticleDOI
30 Oct 1987-Science
TL;DR: The location and asymmetry of the cleavage pattern reveal that the homopyrimidine-EDTA probes bind in the major groove parallel to thehomopurine strand of Watson-Crick double helical DNA.
Abstract: Homopyrimidine oligodeoxyribonucleotides with EDTA-Fe attached at a single position bind the corresponding homopyrimidine-homopurine tracts within large double-stranded DNA by triple helix formation and cleave at that site. Oligonucleotides with EDTA.Fe at the 5' end cause a sequence specific double strand break. The location and asymmetry of the cleavage pattern reveal that the homopyrimidine-EDTA probes bind in the major groove parallel to the homopurine strand of Watson-Crick double helical DNA. The sequence-specific recognition of double helical DNA by homopyrimidine probes is sensitive to single base mismatches. Homopyrimidine probes equipped with DNA cleaving moieties could be useful tools for mapping chromosomes.

1,170 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,684
20205,519
20195,321
20185,133