scispace - formally typeset
Search or ask a question
Institution

California Institute of Technology

EducationPasadena, California, United States
About: California Institute of Technology is a education organization based out in Pasadena, California, United States. It is known for research contribution in the topics: Galaxy & Redshift. The organization has 57649 authors who have published 146691 publications receiving 8620287 citations. The organization is also known as: Caltech & Cal Tech.
Topics: Galaxy, Redshift, Population, Star formation, Stars


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown how the correlations of a quantum system with other quantum systems may cause one of its observables to behave in a classical manner. But, as the correlations spread through the environment on a time scale typically much shorter than the recurrence time scale calculated for the environment already correlated with the pointer observable, the measurement becomes effectively irreversible, and no recurrences will be observed in realistic circumstances.
Abstract: We show how the correlations of a quantum system with other quantum systems may cause one of its observables to behave in a classical manner. In particular, "reduction of the wave packet," postulated by von Neumann to explain definiteness of an outcome of an individual observation, can be explained when a realistic model of an apparatus is adopted. Instead of an isolated quantum apparatus with a number of states equal to the number of possible distinct outcomes of the measurement, discussed by von Neumann, we consider an apparatus interacting with other physical systems, described here summarily as "environment." The interaction of the quantum apparatus with the environment results in correlations. Correlations impose effective superselection rules which prevent apparatus from appearing in a superposition of states corresponding to different eigenvalues of the privileged pointer observable. It is the propagation of the correlations with the pointer basis states which is ultimately responsible for the choice of the pointer observable. It can be thought of as a process of amplification in which the state of many distinct physical systems becomes correlated with the pointer basis state. Whether these environment systems are regarded as a part of the apparatus setup, or as a part of its environment is irrelevant. What is crucial is the redundancy of the record concerning the pointer observable which is imprinted into the correlations. Eigenspaces of the pointer observable provide a natural basis for the pointer of the quantum apparatus and determine the to-be-measured observable of the quantum system. Decay of those elements of the apparatus-system density matrix, which are off-diagonal in the pointer observable, is caused by the natural evolution of the combined system-apparatus-environment object. For a hypothetical finite environment with $N$ distinct eigenvalues of the apparatus-environment interaction Hamiltonian, off-diagonal terms will decay to become of the order of ${N}^{\ensuremath{-}\frac{1}{2}}$, and will recur only on a Poincar\'e time scale. No recurrences will be observed in realistic circumstances. As the correlations spread through the environment on a time scale typically much shorter than the recurrence time scale calculated for the environment already correlated with the pointer observable, the measurement becomes effectively irreversible. Relevance of this model of the measurement process for the understanding of the second law of thermodynamics and its relation to Bohr's "irreversible act of amplification" is briefly discussed. The emergence of the pointer observable can be interpreted as a clue about the resolution of the measurement problem in case of no environment. It points towards the possibility that properties of quantum systems have no absolute meaning. Rather, they must be always characterized with respect to other physical systems.

1,153 citations

Journal ArticleDOI
TL;DR: In this article, the current status of solid oxide (SOFC) and polymer electrolyte membrane (PEMFC) fuel cells is reviewed, with the aim of reducing SOFC costs by reducing operating temperatures to 500-800 °C and reducing PEMFC system complexity.

1,152 citations

Journal ArticleDOI
25 Mar 2005-Science
TL;DR: It is found that protein production rates fluctuate over a time scale of about one cell cycle, while intrinsic noise decays rapidly, which can form a basis for quantitative modeling of natural gene circuits and for design of synthetic ones.
Abstract: The quantitative relation between transcription factor concentrations and the rate of protein production from downstream genes is central to the function of genetic networks. Here we show that this relation, which we call the gene regulation function (GRF), fluctuates dynamically in individual living cells, thereby limiting the accuracy with which transcriptional genetic circuits can transfer signals. Using fluorescent reporter genes and fusion proteins, we characterized the bacteriophage lambda promoter P_R in Escherichia coli. A novel technique based on binomial errors in protein partitioning enabled calibration of in vivo biochemical parameters in molecular units. We found that protein production rates fluctuate over a time scale of about one cell cycle, while intrinsic noise decays rapidly. Thus, biochemical parameters, noise, and slowly varying cellular states together determine the effective single-cell GRF. These results can form a basis for quantitative modeling of natural gene circuits and for design of synthetic ones.

1,152 citations

Journal ArticleDOI
24 Jan 1992-Science
TL;DR: The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures that are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams.
Abstract: The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy. These include linear and nonlinear filtering, passage through information bottlenecks, and coordinated use of multiple types of information. In addition, dynamic regulation of information flow within and between visual areas may provide the computational flexibility needed for the visual system to perform a broad spectrum of tasks accurately and at high resolution.

1,151 citations

Journal ArticleDOI
TL;DR: In this article, a first order correction to the degenerate limit of L can be found based on the measured thermopower, |S|, independent of temperature or doping.
Abstract: In analyzing zT improvements due to lattice thermal conductivity (κ_L ) reduction, electrical conductivity (σ) and total thermal conductivity (κ_(Total)) are often used to estimate the electronic component of the thermal conductivity (κ_E) and in turn κ_L from κ_L = ∼ κ_(Total) − LσT. The Wiedemann-Franz law, κ_E = LσT, where L is Lorenz number, is widely used to estimate κ_E from σ measurements. It is a common practice to treat L as a universal factor with 2.44 × 10^(−8) WΩK^(−2) (degenerate limit). However, significant deviations from the degenerate limit (approximately 40% or more for Kane bands) are known to occur for non-degenerate semiconductors where L converges to 1.5 × 10^(−8) WΩK^(−2) for acoustic phonon scattering. The decrease in L is correlated with an increase in thermopower (absolute value of Seebeck coefficient (S)). Thus, a first order correction to the degenerate limit of L can be based on the measured thermopower, |S|, independent of temperature or doping. We propose the equation: L=1.5+exp[−_(|S|)_(116)] (where L is in 10^(−8) WΩK^(−2) and S in μV/K) as a satisfactory approximation for L. This equation is accurate within 5% for single parabolic band/acoustic phonon scattering assumption and within 20% for PbSe, PbS, PbTe, Si_(0.8) Ge _(0.2) where more complexity is introduced, such as non-parabolic Kane bands, multiple bands, and/or alternate scattering mechanisms. The use of this equation for L rather than a constant value (when detailed band structure and scattering mechanism is not known) will significantly improve the estimation of lattice thermal conductivity.

1,147 citations


Authors

Showing all 58155 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Donald P. Schneider2421622263641
George M. Whitesides2401739269833
Yi Chen2174342293080
David Baltimore203876162955
Edward Witten202602204199
George Efstathiou187637156228
Michael A. Strauss1851688208506
Jing Wang1844046202769
Ruedi Aebersold182879141881
Douglas Scott1781111185229
Hyun-Chul Kim1764076183227
Phillip A. Sharp172614117126
Timothy M. Heckman170754141237
Zhenan Bao169865106571
Network Information
Related Institutions (5)
Massachusetts Institute of Technology
268K papers, 18.2M citations

95% related

Princeton University
146.7K papers, 9.1M citations

94% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

University of California, Berkeley
265.6K papers, 16.8M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023176
2022737
20214,684
20205,519
20195,321
20185,133