scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
26 Nov 2009-Nature
TL;DR: In addition to offering the potential for medical advances, immunomodulatory materials can form well-defined model systems, helping to provide new insight into basic immunobiology.
Abstract: The engineering of materials that can modulate the immune system is an emerging field that is developing alongside immunology. For therapeutic ends such as vaccine development, materials are now being engineered to deliver antigens through specific intracellular pathways, allowing better control of the way in which antigens are presented to one of the key types of immune cell, T cells. Materials are also being designed as adjuvants, to mimic specific 'danger' signals in order to manipulate the resultant cytokine environment, which influences how antigens are interpreted by T cells. In addition to offering the potential for medical advances, immunomodulatory materials can form well-defined model systems, helping to provide new insight into basic immunobiology.

536 citations

Journal ArticleDOI
TL;DR: The status of solidification science is critically evaluated and future directions of research in this technologically important area are proposed in this paper, where the most important advances in solidification sciences and technology of the last decade are discussed: interface dynamics, phase selection, microstructure selection, peritectic growth, convection effects, multicomponent alloys, and numerical techniques.

535 citations

Journal ArticleDOI
TL;DR: Total order broadcast and multicast (also called atomic broadcast/multicast) present an important problem in distributed systems, especially with respect to fault-tolerance.
Abstract: Total order broadcast and multicast (also called atomic broadcast/multicast) present an important problem in distributed systems, especially with respect to fault-tolerance. In short, the primitive ensures that messages sent to a set of processes are, in turn, delivered by all those processes in the same total order.

535 citations

Journal ArticleDOI
TL;DR: This topical review addresses materials with a periodic modulation of magnetic parameters that give rise to artificially tailored band structures and allow unprecedented control of spin waves in microand nanostructured ferromagnetic materials.
Abstract: Research efforts addressing spin waves (magnons) in micro- and nanostructured ferromagnetic materials have increased tremendously in recent years. Corresponding experimental and theoretical work in magnonics faces significant challenges in that spin-wave dispersion relations are highly anisotropic and different magnetic states might be realized via, for example, the magnetic field history. At the same time, these features offer novel opportunities for wave control in solids going beyond photonics and plasmonics. In this topical review we address materials with a periodic modulation of magnetic parameters that give rise to artificially tailored band structures and allow unprecedented control of spin waves. In particular, we discuss recent achievements and perspectives of reconfigurable magnonic devices for which band structures can be reprogrammed during operation. Such characteristics might be useful for multifunctional microwave and logic devices operating over a broad frequency regime on either the macro- or nanoscale.

535 citations

Journal ArticleDOI
TL;DR: A simple and quantitative explanation for the relatively low melting temperatures of ionic liquids (ILs) is developed, and from very little experimental and computational data it is possible to predict fundamental properties such as melting points and dielectric constants of Ionic liquids with good accuracy.
Abstract: We have developed a simple and quantitative explanation for the relatively low melting temperatures of ionic liquids (ILs). The basic concept was to assess the Gibbs free energy of fusion (ΔfusG) for the process IL(s) → IL(l), which relates to the melting point of the IL. This was done using a suitable Born−Fajans−Haber cycle that was closed by the lattice (i.e., IL(s) → IL(g)) Gibbs energy and the solvation (i.e., IL(g) → IL(l)) Gibbs energies of the constituent ions in the molten salt. As part of this project we synthesized and determined accurate melting points (by DSC) and dielectric constants (by dielectric spectroscopy) for 14 ionic liquids based on four common anions and nine common cations. Lattice free energies (ΔlattG) were estimated using a combination of Volume Based Thermodynamics (VBT) and quantum chemical calculations. Free energies of solvation (ΔsolvG) of each ion in the bulk molten salt were calculated using the COSMO solvation model and the experimental dielectric constants. Under stand...

535 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,249
20205,644
20195,432
20185,094