scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
Željko Ivezić1, Steven M. Kahn2, J. Anthony Tyson3, Bob Abel4  +332 moreInstitutions (55)
TL;DR: The Large Synoptic Survey Telescope (LSST) as discussed by the authors is a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile.
Abstract: We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the solar system, exploring the transient optical sky, and mapping the Milky Way. LSST will be a large, wide-field ground-based system designed to obtain repeated images covering the sky visible from Cerro Pachon in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2 field of view, a 3.2-gigapixel camera, and six filters (ugrizy) covering the wavelength range 320–1050 nm. The project is in the construction phase and will begin regular survey operations by 2022. About 90% of the observing time will be devoted to a deep-wide-fast survey mode that will uniformly observe a 18,000 deg2 region about 800 times (summed over all six bands) during the anticipated 10 yr of operations and will yield a co-added map to r ~ 27.5. These data will result in databases including about 32 trillion observations of 20 billion galaxies and a similar number of stars, and they will serve the majority of the primary science programs. The remaining 10% of the observing time will be allocated to special projects such as Very Deep and Very Fast time domain surveys, whose details are currently under discussion. We illustrate how the LSST science drivers led to these choices of system parameters, and we describe the expected data products and their characteristics.

921 citations

Journal ArticleDOI
TL;DR: Park et al. as discussed by the authors proposed a reproducible manufacturing method for perovskite solar cells, as well as routes to manage grain boundaries and interfacial charge transport to achieve long-term stability.
Abstract: Solar cells employing a halide perovskite with an organic cation now show power conversion efficiency of up to 22%. However, these cells are facing issues towards commercialization, such as the need to achieve long-term stability and the development of a manufacturing method for the reproducible fabrication of high-performance devices. Here, we propose a strategy to obtain stable and commercially viable perovskite solar cells. A reproducible manufacturing method is suggested, as well as routes to manage grain boundaries and interfacial charge transport. Electroluminescence is regarded as a metric to gauge theoretical efficiency. We highlight how optimizing the design of device architectures is important not only for achieving high efficiency but also for hysteresis-free and stable performance. We argue that reliable device characterization is needed to ensure the advance of this technology towards practical applications. We believe that perovskite-based devices can be competitive with silicon solar modules, and discuss issues related to the safe management of toxic material. Perovskite solar cells have emerged as a potential low-cost alternative to existing technologies. In this Perspective, Park et al. explore a strategy for the commercialisation of perovskite solar cells.

920 citations

Journal ArticleDOI
TL;DR: Detailed studies of lanthanide solvates with water or acetonitrile suggest that trivalent lanthanides display a tendency to adopt nine-coordinate tricapped trigonal prismatic (TTP) arrangements around the metal ion in the solid state.
Abstract: As a result of the different degrees of stabilization experienced by the 4f, 5d, and 6s orbitals occurring upon ionization of the neutral metal, the lanthanides (La-Lu, Z ) 57-71) exist almost exclusively in their trivalent state Ln(III) ([Xe]4fn, n ) 0-14) in coordination complexes or supramolecular assemblies.1 Except for some arene compounds involving bulky substituted benzenes or cyclo-octatetraenes,2 covalence plays a minor role in Ln-ligand dative bonds and the nature of the coordination sphere is controlled by a subtle interplay between electrostatic interactions and interligand steric constraints.3 Variable coordination numbers (6 e CN e 12) and geometries are thus observed in lanthanide complexes, leading to limited success in the design of molecular architectures with predetermined structures.3,4 Although rigid or semirigid receptors may help to control the coordination sphere according to the lock-and-key and induced fit concepts,5 detailed studies of lanthanide solvates with water or acetonitrile suggest that trivalent lanthanides display a tendency to adopt nine-coordinate tricapped trigonal prismatic (TTP) arrangements around the metal ion in the solid state. In solution, the picture is a little more subtle:6 in water, for instance, large Ln(III) ions at the beginning of the series (Ln ) La-Nd) adopt TTP geometries, which are gradually transformed into eight-coordinate square antiprismatic (SAP) arrangements for small Ln(III) ions (Ln ) Tb-Lu), equilibria between CN ) 8 and CN ) 9 being observed for Ln ) Nd-Tb.7 The systematic contraction of the ionic radii observed when going from Ln ) La to Lu (often referred to as the lanthanide contraction)8 explains this trend and increases electrostatic bonding for heavier lanthanides, but this variation is so smooth and limited (15% contraction between La and Lu and ≈1% between two successive lanthanides) that selective recognition and incorporation into organized supramolecular architectures remains challenging.5 A rational access to extended polymetallic lanthanide-containing assemblies with predictable and controlled geometries is consequently very limited, and pioneer work in this field has focused on poorly characterized intricate mixtures of complexes in solution which are ‘transformed’ into well-defined solid-state clusters or networks through crystallization processes involving a rich palette of † Institute of Molecular and Biological Chemistry, Lausanne. E-mail: Jean-Claude.Bunzli@epfl.ch. ‡ Department of Inorganic, Analytical and Applied Chemistry, Geneva. E-mail: Claude.Piguet@chiam.unige.ch.

918 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the direct observation in TaAs of the long-sought-after Weyl nodes by performing bulk-sensitive soft X-ray angle-resolved photoemission spectroscopy measurements.
Abstract: Experiments show that TaAs is a three-dimensional topological Weyl semimetal. In 1929, H. Weyl proposed that the massless solution of the Dirac equation represents a pair of a new type of particles, the so-called Weyl fermions1. However, their existence in particle physics remains elusive after more than eight decades. Recently, significant advances in both topological insulators and topological semimetals have provided an alternative way to realize Weyl fermions in condensed matter, as an emergent phenomenon: when two non-degenerate bands in the three-dimensional momentum space cross in the vicinity of the Fermi energy (called Weyl nodes), the low-energy excitations behave exactly as Weyl fermions. Here we report the direct observation in TaAs of the long-sought-after Weyl nodes by performing bulk-sensitive soft X-ray angle-resolved photoemission spectroscopy measurements. The projected locations at the nodes on the (001) surface match well to the Fermi arcs, providing undisputable experimental evidence for the existence of Weyl fermionic quasiparticles in TaAs.

917 citations

Book
19 Aug 2002
TL;DR: In this article, the authors present an approach for approximating the Stokes and Navier-Stokes equations for elliptic problems with respect to orthogonal polynomials and discrete transforms.
Abstract: Preface 1. Fluid mechanics and computation: an introduction 2. Approximation methods for elliptic problems 3. Parabolic and hyperbolic problems 4. Mutidimensional problems 5. Steady Stokes and Navier-Stokes equations 6. Unsteady Stokes and Navier-Stokes equations 7. Domain decomposition 8. Vector and parallel implementations Appendix A. Preliminary mathematical concepts Appendix B. Orthogonal polynomials and discrete transforms.

917 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,249
20205,644
20195,432
20185,094