scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: This article examines different approaches to model transformations and recommends desirable language characteristics for describing them and helps clarify the role of language in model transformations.
Abstract: The model-driven approach can increase development productivity and quality by describing important aspects of a solution with human-friendly abstractions and by generating common application fragments with templates. This article examines different approaches to model transformations and recommends desirable language characteristics for describing them.

879 citations

Book ChapterDOI
08 Oct 2016
TL;DR: This work introduces a novel Deep Network architecture that implements the full feature point handling pipeline, that is, detection, orientation estimation, and feature description, and shows how to learn to do all three in a unified manner while preserving end-to-end differentiability.
Abstract: We introduce a novel Deep Network architecture that implements the full feature point handling pipeline, that is, detection, orientation estimation, and feature description. While previous works have successfully tackled each one of these problems individually, we show how to learn to do all three in a unified manner while preserving end-to-end differentiability. We then demonstrate that our Deep pipeline outperforms state-of-the-art methods on a number of benchmark datasets, without the need of retraining.

878 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a measurement of the Hubble constant and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays.
Abstract: We present a measurement of the Hubble constant ($H_{0}$) and other cosmological parameters from a joint analysis of six gravitationally lensed quasars with measured time delays. All lenses except the first are analyzed blindly with respect to the cosmological parameters. In a flat $\Lambda$CDM cosmology, we find $H_{0} = 73.3_{-1.8}^{+1.7}$, a 2.4% precision measurement, in agreement with local measurements of $H_{0}$ from type Ia supernovae calibrated by the distance ladder, but in $3.1\sigma$ tension with $Planck$ observations of the cosmic microwave background (CMB). This method is completely independent of both the supernovae and CMB analyses. A combination of time-delay cosmography and the distance ladder results is in $5.3\sigma$ tension with $Planck$ CMB determinations of $H_{0}$ in flat $\Lambda$CDM. We compute Bayes factors to verify that all lenses give statistically consistent results, showing that we are not underestimating our uncertainties and are able to control our systematics. We explore extensions to flat $\Lambda$CDM using constraints from time-delay cosmography alone, as well as combinations with other cosmological probes, including CMB observations from $Planck$, baryon acoustic oscillations, and type Ia supernovae. Time-delay cosmography improves the precision of the other probes, demonstrating the strong complementarity. Allowing for spatial curvature does not resolve the tension with $Planck$. Using the distance constraints from time-delay cosmography to anchor the type Ia supernova distance scale, we reduce the sensitivity of our $H_0$ inference to cosmological model assumptions. For six different cosmological models, our combined inference on $H_{0}$ ranges from $\sim73$-$78~\mathrm{km~s^{-1}~Mpc^{-1}}$, which is consistent with the local distance ladder constraints.

875 citations

Journal ArticleDOI
TL;DR: Emergent trends and gaps in understanding are identified, new approaches to more fully integrate genomics into speciation research are proposed, and an integrative definition of the field of speciation genomics is provided.
Abstract: Speciation is a fundamental evolutionary process, the knowledge of which is crucial for understanding the origins of biodiversity. Genomic approaches are an increasingly important aspect of this research field. We review current understanding of genome-wide effects of accumulating reproductive isolation and of genomic properties that influence the process of speciation. Building on this work, we identify emergent trends and gaps in our understanding, propose new approaches to more fully integrate genomics into speciation research, translate speciation theory into hypotheses that are testable using genomic tools and provide an integrative definition of the field of speciation genomics.

875 citations

Journal ArticleDOI
TL;DR: The findings will be outlined according to the four major substeps of microsphere preparation by solvent extraction/evaporation, namely, incorporation of the bioactive compound, formation of the microdroplets, solvent removal and harvesting and drying the particles.

874 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,249
20205,644
20195,432
20185,094