scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Proceedings ArticleDOI
09 Jun 2002
TL;DR: It is shown that a network with CONFIDANT and up to 60% of misbehaving nodes behaves almost as well as a benign network, in sharp contrast to a defenseless network.
Abstract: Mobile ad-hoc networking works properly only if the participating nodes cooperate in routing and forwarding. However,it may be advantageous for individual nodes not to cooperate. We propose a protocol, called CONFIDANT, for making misbehavior unattractive; it is based on selective altruism and utilitarianism. It aims at detecting and isolating misbehaving nodes, thus making it unattractive to deny cooperation. Trust relationships and routing decisions are based on experienced, observed, or reported routing and forwarding behavior of other nodes. The detailed implementation of CONFIDANT in this paper assumes that the network layer is based on the Dynamic Source Routing (DSR) protocol. We present a performance analysis of DSR fortified by CONFIDANT and compare it to regular defenseless DSR. It shows that a network with CONFIDANT and up to 60% of misbehaving nodes behaves almost as well as a benign network, in sharp contrast to a defenseless network. All simulations have been implemented and performed in GloMoSim.

1,569 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a new type of solar cell that is based on a photoelectrochemical process, where the light absorption is performed by a monolayer of dye (i.e., a Ruthenium complex) that is adsorbed chemically at the surface of a semiconductor.
Abstract: During the past five years, the authors have developed in their laboratory a new type of solar cell that is based on a photoelectrochemical process. The light absorption is performed by a monolayer of dye (i.e., a Ruthenium complex) that is adsorbed chemically at the surface of a semiconductor (i.e., titanium oxide (TiO{sub 2})). When excited by a photon, the dye has the ability to transfer an electron to the semiconductor. The electric field that is inside the material allows extraction of the electron, and the positive charge is transferred from the dye to a redox mediator that is present in solution. A respectable photovoltaic efficiency (i.e., 10%) is obtained by the use of mesoporous, nanostructured films of anatase particles. The authors show how the TiO{sub 2} electrode microstructure influences the photovoltaic response of the cell. More specifically, they focus on how processing parameters such as precursor chemistry, temperature for hydrothermal growth, binder addition, and sintering conditions influence the film porosity, pore-size distribution, light scattering, and electron percolation and consequently affect the solar-cell efficiency.

1,552 citations

Journal ArticleDOI
01 Jan 2007
TL;DR: This paper provides a set of security protocols, it is shown that they protect privacy and it is analyzed their robustness and efficiency, and describes some major design decisions still to be made.
Abstract: Vehicular networks are very likely to be deployed in the coming years and thus become the most relevant form of mobile ad hoc networks. In this paper, we address the security of these networks. We provide a detailed threat analysis and devise an appropriate security architecture. We also describe some major design decisions still to be made, which in some cases have more than mere technical implications. We provide a set of security protocols, we show that they protect privacy and we analyze their robustness and efficiency.

1,550 citations

Journal ArticleDOI
TL;DR: In this article, advanced computer assisted design strategies that address the difficult problem of relating primary sequence to peptide structure, and are delivering more potent, cost-effective, broad-spectrum peptides as potential next-generation antibiotics.
Abstract: Multidrug-resistant bacteria are a severe threat to public health. Conventional antibiotics are becoming increasingly ineffective as a result of resistance, and it is imperative to find new antibacterial strategies. Natural antimicrobials, known as host defence peptides or antimicrobial peptides, defend host organisms against microbes but most have modest direct antibiotic activity. Enhanced variants have been developed using straightforward design and optimization strategies and are being tested clinically. Here, we describe advanced computer-assisted design strategies that address the difficult problem of relating primary sequence to peptide structure, and are delivering more potent, cost-effective, broad-spectrum peptides as potential next-generation antibiotics.

1,543 citations

Journal ArticleDOI
TL;DR: This data indicates that self-Assembled Monolayers and Walled Carbon Nanotubes with high adhesion to Nitroxide-Mediated Polymerization have potential in the well-Defined Polymer Age.
Abstract: Keywords: Fragmentation Chain-Transfer ; Self-Assembled Monolayers ; Walled Carbon Nanotubes ; Well-Defined Polymer ; Nitroxide-Mediated Polymerization ; Block-Copolymer Brushes ; Poly(Methyl Methacrylate) Brushes ; Transfer Raft Polymerization ; Quartz-Crystal Microbalance ; Poly(Acrylic Acid) Brushes Reference EPFL-REVIEW-148464doi:10.1021/cr900045aView record in Web of Science Record created on 2010-04-23, modified on 2017-05-10

1,542 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,249
20205,644
20195,432
20185,094